

FairCom White Paper

Caching and Data Integrity
Recommendations
FairCom’s c-treeACE Database Technology

© Copyright 2017, FairCom Corporation.

All rights reserved.

c-treeACE, c-treeRTG, c-treeAMS, c-tree Plus, c-tree, r-tree, FairCom, and FairCom’s circular disc logo are

trademarks of FairCom Corporation, registered in the United States and other countries. All other trademarks are the

property of their holders.

All Rights Reserved ii www.faircom.com

Contents

1. Best Practices - Caching vs. Data Integrity .. 1

1.1 The effects of caching on data recovery.. 1

2. Disk Caching ... 2

2.1 Data and Index Caching ... 2

2.2 Data Recovery .. 2

2.3 The Cache Stack .. 3

2.4 FairCom Caching and Transaction Control ... 3

3. Transaction Processing ... 5

3.1 Full Transaction Processing .. 6

3.2 PreImage Transaction Processing .. 7

3.2.1 When to Use PREIMG Files .. 7

3.3 No Transaction Processing ... 9

3.3.1 When to Use Non-Transaction Files ... 9

3.4 Flushing Log Files to Disk ... 9

3.5 Properties of Cached Files .. 11

3.6 WRITETHRU Files .. 11

3.6.1 Properties of WRITETHRU Files ... 12

3.6.2 When to Use WRITETHRU Files .. 12

4. The Impact of Other Technologies .. 13

4.1 Uninterruptible Power Supplies ... 13

4.2 Solid State Drives ... 13

4.3 The Big Red Button .. 14

4.4 Replication .. 14

5. Configuration Considerations ... 15

6. Best Practices ... 16

7. Index .. 17

All Rights Reserved 1 www.faircom.com

Chapter 1

1. Best Practices - Caching vs. Data

Integrity

1.1 The effects of caching on data recovery

Persistent data storage can be affected by two different failure modes:

1. The c-treeACE Server process (ctreesql or ctsrvr) may be unexpectedly terminated while the
operating system continues to run.

2. A system crash or power loss may cause the entire system (including the c-treeACE Server
and the operating system) to fail.

Case number 1 is the more common occurrence. Case number 2 can be partially avoided by

using an uninterruptible power supply (UPS) to provide emergency power in case of a power

failure.

As will be explained in this paper, data is typically placed in temporary cache memory before it is

written to disk. In the case of the c-treeACE Server crashing, data written to the file system cache

can still be written to disk. In the case of a complete system crash or power loss, data that is in

temporary cache memory may be lost. The proper use of transaction processing can ensure that

data files remain complete and consistent in the event of either type of occurrence.

Remember: No matter how many precautions you take, accidents (such as catastrophic failures
and natural disasters) may happen that are beyond your ability to control.

All Rights Reserved 2 www.faircom.com

Chapter 2

2. Disk Caching

Disk I/O operations are expensive in terms of performance, causing a bottleneck when

permanently storing data. Because database file management is an intensely I/O-bound process,

any advantage that can be obtained by keeping data in memory will provide faster response

times to applications.

To cope with the hindrance of disk I/O, techniques have been devised to allow a program to

continue executing without waiting for data to be written to disk. These techniques typically

involve writing the data to a cache buffer (in fast temporary memory) where it will be stored until it

can be flushed (written to disk) at a later time. As soon as the program has written data to the

cache, it can go on processing the next instructions. The cache will be flushed to disk during idle

time between other operations. If the cache is independent of the CPU (such as cache built into

the disk controller), it may be possible to flush the cache while the application and operating

system are busy.

2.1 Data and Index Caching

The c-treeACE Server maintains data and index caches in

which it stores the most recently used data images and index

nodes. These caches provide high-speed memory access to

this information, reducing demand for slower disk I/O. The

server writes data and index updates first to cache and

eventually to disk. Data and index reads are satisfied from the

server’s cache if possible. When necessary, the server writes

parts of the cache to disk using a least recently used (LRU)

scheme. The server also supports background flushing of

cache buffers during system idle times.

The cache sizes are determined by the server configuration

file. It is possible to disable caching of specific data files and

to dedicate a portion of the data cache to specified data files.

2.2 Data Recovery

Although the caching technique described above can be an efficient method for storing data to

disk with minimal impact on performance, it has implications regarding data recovery. The

program's logic may assume the data is safely stored on disk (permanent storage) when, in fact,

it is still in the cache memory (temporary storage) waiting to be written to disk. If the system

encounters a catastrophic failure, such as a power failure, before the cache can be flushed, the

program may not be able to recover that data.

Disk Caching

All Rights Reserved 3 www.faircom.com

FairCom c-treeACE provides its own caching that is integrated with the program's logic. When

data is written to disk, it is stored in a temporary cache that will be flushed to disk during idle time.

Although the program can continue with certain operations while the data is still in the cache, it

does not consider the write to be completed until the cache buffer is flushed to disk. If the file is

under transaction control, system recovery can use the transaction log to restore the data in case

of a failure.

2.3 The Cache Stack

A typical server provides several "layers" of caching, which can be thought of as a "cache stack."

Each layer of your cache stack has a different impact on performance and data integrity. The

diagram below depicts the layers of caching that may be present on your system:

FairCom c-treeACE

Application Level Caching - c-treeACE provides its own caching integrated into the
product so that flushing of the cache can be coordinated with recovery logs.

File System

File System Caching - The operating system typically provides caching. This cache
can benefit performance but it places non-transaction controlled data at risk. It is
vulnerable in the case of a hardware failure or power loss.

Disk Controller

Hardware Caching (level 1) - Some disk controllers include their own hardware
caching. In case of failure, there is no guarantee that recovery will be possible.

HDD Caching Hardware Caching (level 2) - Most modern hard disk drives have caching built in.

HDD Platter Physical Medium - This is where the data is written to permanent storage.

A virtual machine will add at least one layer of caching.

The layers of caching provided by the file system and the disk controller do little to improve

performance beyond FairCom's built-in caching. In some cases (e.g., with very large data sets),

the file system cache is simply added overhead that may slow down the performance gains

provided by c-treeACE caching. It is recommended that file system cache be shut off for critical

data files (use the UNBUFFERED_IO keyword on Windows).

Caching provided by the disk controller is completely transparent to applications and the

operating system. As such, the program is not able to know if the cache has been flushed of if

data is waiting to be written to disk. This makes it impossible for the program to recover the data if

a failure occurs while it is waiting in the disk controller's cache. For data integrity, disk controller

cache should be disabled.

2.4 FairCom Caching and Transaction Control

FairCom c-treeACE provides its own caching. By integrating this caching with the logic of the core

engine, flushing of the cache can be coordinated with transaction logs. Transaction control is

turned on when creating the file by setting the file mode or storage attributes. A utility (cttrnmod)

can be used to change the modes of existing files.

When a file is under transaction control, nothing is placed into cache until the transaction is

committed. (The transaction is held in temporary memory, called PreImage, until it is complete.)

Disk Caching

All Rights Reserved 4 www.faircom.com

Although there is some overhead from transaction control, this cache provides good performance

while maintaining data integrity.

Three different levels of transaction processing are provided by FairCom c-treeACE: Full,

PreImage, and None. Your choice of transaction control affects both performance and

recoverability. The next section describes these modes in detail.

All Rights Reserved 5 www.faircom.com

Chapter 3

3. Transaction Processing

Transaction control is an

important consideration when

optimizing between

recoverability and performance.

When properly configured,

transaction processing can

ensure recoverability with a

minimum impact on

performance. If transaction

processing is ignored, you can

be leaving your data vulnerable

to loss in the case of a server

failure or hardware failure.

Three different levels of

c-treeACE transaction

processing can be implemented.

Each level offers different

features and benefits. In

particular, each level has a

different trade-off between

speed and recoverability:

Full Transaction Processing

PreImage Transaction
Processing

No Transaction Processing

Transaction Processing

All Rights Reserved 6 www.faircom.com

3.1 Full Transaction Processing

Full Transaction Processing (referred to a TRNLOG or

“tran-log”) provides for complete data integrity with full

ACID compliance.

TRNLOG files may be updated only within an active

transaction. The server stores TRNLOG file updates in

memory known as “pre-image space” until the

transaction is committed or aborted. It logs transaction

"begin" and "commit" operations and file updates to

disk-based transaction log files. The use of pre-image

space guarantees atomicity and isolation of transaction

operations: Changes are made on an all-or-nothing

basis and other clients do not see changes until the

transaction is committed. The use of transaction logs

guarantees recoverability of transactions in the event of

an abnormal server termination.

The server ensures TRNLOG files are in a consistent

state by performing automatic recovery at server

startup. Full Transaction Processing supports both

transaction atomicity and transaction recoverability.

Recovery of all committed transactions from any
software or hardware failure not involving storage
media damage is fully automatic.

The Server can guarantee recoverability of TRNLOG

files in the event of an abnormal server termination

because it logs to disk the transaction state and updated buffers necessary to guarantee

recoverability. At startup, the automatic recovery procedure applies the necessary changes to

TRNLOG data and index files to ensure the system is in a consistent transaction state.

In those cases where media damage has occurred, many times the database can be recreated if

the appropriate backups and/or logs survived the catastrophe.

Create data and index files as TRNLOG files when operations on the files must be atomic and

updates must be recoverable in the event of an abnormal server termination. If only atomicity is

needed, PreImage Transaction Processing (page 7) may be more appropriate.

The performance impact of checkpoint operations, transaction log flushing, and transaction file

buffer flushing can be minimized using transaction-related server configuration options such as:

CHECKPOINT_FLUSH

CHECKPOINT_INTERVAL

COMMIT_DELAY

LOG_SPACE

LOG_TEMPLATE

TRANSACTION_FLUSH

Transaction Processing

All Rights Reserved 7 www.faircom.com

3.2 PreImage Transaction Processing

PreImage Transaction Processing (also called

PREIMG or "pre-image") provides high-speed and

guaranteed atomic transactions without transaction

logging. PreImage Transaction Processing enjoys

many of the benefits of transaction control, including

full commit and rollback, with a relatively small increase

in processing overhead.

Unlike Full Transaction Processing, file updates are not

logged to the server’s transaction logs. For this reason,

PreImage files are not recoverable in the event of an

abnormal server termination. In such a situation, a

PreImage file is in an unknown state because an

unknown number of updates may have not yet been

written to disk at the time of the abnormal server

termination.

Because automatic recovery does not process

PreImage files, a PreImage file rebuilt after an

abnormal server termination is not guaranteed to be in

a consistent transaction state. In such a situation,

PreImage files could contain data that was in the

process of being committed but for which the commit

had not yet been completed.

Because no protection from catastrophic failure is provided, it is important to provide other means
for data recovery when using this mode.

3.2.1 When to Use PREIMG Files

The benefit of PREIMG is that it avoids the overhead associated with writing to and flushing the

transaction logs. If atomicity is required for a file but recoverability is not, PREIMG may be an

appropriate choice. Some specific cases in which PREIMG may be appropriate include:

¶ Using TRNLOG data files and PREIMG indexes if you are willing to rebuild the indexes after

an abnormal server termination.

¶ Using PREIMG on files that can be re-created in the event of an abnormal server termination.

Transaction Processing

All Rights Reserved 8 www.faircom.com

To minimize loss of unwritten cached PREIMG file updates in the event of an abnormal server

termination, consider using WRITETHRU for PREIMG files or periodically calling the c-tree API

function CtreeFlushFile() to flush PREIMG data and index cache pages to disk.

Transaction Processing

All Rights Reserved 9 www.faircom.com

3.3 No Transaction Processing

No Transaction Processing (or "non-transaction files")

is the simplest transaction level. This mode is

appropriate for temporary files and for non-critical data.

The server does not guarantee that unwritten updated

data and index cache pages are backed by a persistent

copy on disk, so non-transaction files are not

recoverable in the event of an abnormal server

termination. In such a situation a non-transaction file is

in an unknown state because an unknown number of

updates may have not yet been written to disk at the

time of the abnormal server termination.

This mode does not provide recoverability. It is best
suited for temporary data that does not need to be
committed to permanent storage. If it is used for
critical data, data integrity must be protected by other
means.

3.3.1 When to Use Non-Transaction Files

Use non-transaction files when the files are of a temporary nature and can be re-created or the

data in the files can be restored from another source in the event of an abnormal server

termination.

To minimize loss of unwritten cached non-transaction file updates in the event of an abnormal

server termination, consider using WRITETHRU for non-transaction files or periodically calling the

c-tree API function CtreeFlushFile() to flush non-transaction data and index cache pages to disk.

3.4 Flushing Log Files to Disk

Background Flushes

When all threads are idle, c-treeACE flushes the cache in the background (unless any activity is

detected).

Every 15 seconds (a configurable interval), a thread checks to see if the system is idle and, if so,

flushes the cache. This operation is designed to yield to any activity. Additionally, the cache is

flushed when any of these events occur:

¶ when the cache is full

¶ when you close a file

Transaction Processing

All Rights Reserved 10 www.faircom.com

c-treeACE flushes data and index caches during idle time via idle thread processes.

Transaction-controlled files are flushed by one thread, while non-transaction controlled files are

flushed by another. These threads periodically wake and, if c-treeACE is idle, begin flushing.

Subsequent activity terminates the flush so that it does not impact performance. For complete

control, the wake-up timing is configurable and the threads can be disabled.

It is important to note that the background flushes are designed to yield to any other server
activity. As such, you should not count on them to keep your data written to disk.

KEEPOPEN Files

When using the KEEPOPEN keyword, the file is stays open and any updated data remains in

c-treeACE Server's cache. In this case, do not expect all the data to be in file system cache or on

disk at the time that the file close call returns to the client. Files using KEEPOPEN can be flushed

to disk by the idle flush threads or by calling CtreeFlushFile().

Transaction Control

When a file is under transaction control, completed transactions are written to log files. These

transaction log files are flushed to disk when the transaction is committed or when a save point is

reached. The transaction is held in temporary PreImage memory until it is written to the log file.

The configuration keyword COMPATIBILITY LOG_WRITETHRU can result in performance gains

without sacrificing recoverability. Without this keyword, individual transactions are written to the

file system cache and then flushed to disk periodically. This can impact performance while the

data is being written to disk. When this keyword is used, transactions are written to the file system

cache then to disk. Although this may impact performance on each transaction, it avoids the

bottleneck of writing a large number of transactions to disk.

Similarly, COMPATIBILITY TDATA_WRITETHRU and COMPATIBILITY TINDEX_WRITETHRU

force transaction-controlled data files and index files, respectively, to be written directly to disk.

Transaction Processing

All Rights Reserved 11 www.faircom.com

3.5 Properties of Cached Files

Although caching data benefits server performance, it is important to be aware of the effect of

caching data on the recoverability of updates. The state of a cached file after an abnormal server

termination depends on the c-tree options in effect for that file. Below is a summary of the effect

of caching on each file type:

¶ TRNLOG files: Caching does not affect recoverability. The server’s transaction processing

logic ensures that all committed transactions are recovered in the event of an abnormal

server termination.

¶ PREIMG or non-transaction files: Caching can lead to loss of unwritten cached data in the

event of an abnormal server termination. For these file types, the server does not guarantee

a persistent version of the unwritten updated cache images exists on disk, so any unwritten

cached data is lost in the event of an abnormal server termination.

WRITETHRU (PREIMG and non-transaction files): To minimize loss of cached data, the

WRITETHRU attribute can be applied to a PREIMG or non-transaction file. WRITETHRU causes

writes to be written through the server’s cache to the file system (for low-level updates) or flushed

to disk (for ISAM updates). See WRITETHRU Files (page 11).

3.6 WRITETHRU Files

For non-WRITETHRU files, the server stores data and index updates in its internal cache and

does not write updates immediately to disk. For TRNLOG files, this is not a concern because

committed updates to TRNLOG files are logged to the transaction logs. For non-TRNLOG files,

however, in the event of an abnormal server termination the contents of the cache (and hence

any unwritten updates to data and index files) will be lost.

In this situation, the server marks non-TRNLOG files as corrupt to indicate that the file was

opened, updated, and not properly closed, so its state is unknown. Attempting to open such a file

fails with error FCRP_ERR (14, file corrupt at open). Rebuilding the data file and its associated

indexes resets the update flag and allows the application to open the file, but all cached updates

that had not yet been written to disk are lost.

The WRITETHRU file mode can be applied to c-tree data and index files to cause the server to

write updates through the server’s cache to the file system cache or to disk, thereby minimizing

the potential for loss of cached updates in the event of an abnormal server termination. While

ensuring the updates are written to the file system or to disk, WRITETHRU preserves the updates

in the server’s cache so that reads can be satisfied from the server’s cache.

A data or index file can be created as a WRITETHRU file (in which case WRITETHRU is a

permanent attribute of the file), or it can be opened as a WRITETHRU file (in which case the file

is treated as WRITETHRU until it is closed).

Transaction Processing

All Rights Reserved 12 www.faircom.com

3.6.1 Properties of WRITETHRU Files

For non-transaction WRITETHRU files, all updates are

written through the server’s cache to the file system

cache. The server flushes file system buffers on each

ISAM update operation for WRITETHRU files.

(Low-level updates on WRITETHRU files are written

through the server’s cache to the file system cache but

are not flushed to disk.)

For PREIMG files opened or created with the

WRITETHRU attribute, the server behaves as follows:

¶ PREIMG indexes are placed into standard

WRITETHRU mode except that changes in the

number of index entries are output at transaction

commit time.

¶ PREIMG data files are placed into a modified mode

in which file updates and header updates are only

output at transaction commit time.

WRITETHRU minimizes the possibility of lost updates

in the event of a catastrophic event because it writes

updated cache pages to disk at the time of the update

operation. However, WRITETHRU does not provide the

guarantee of recoverability that TRNLOG provides.

When using WRITETHRU, it is possible for some

updates to be lost or for data and index file

inconsistencies to exist following a catastrophe.

3.6.2 When to Use WRITETHRU Files

WRITETHRU is useful for ensuring that updates to data and index files are written to the file

system cache (or to disk in the case of ISAM updates) at the time of the update (or commit in the

case of PREIMG WRITETHRU files). PREIMG and non-transaction files that do not use

WRITETHRU can experience significant data loss due to unwritten cached data in the event of an

abnormal server termination.

All Rights Reserved 13 www.faircom.com

Chapter 4

4. The Impact of Other Technologies

Several technologies that are commonly employed in IT environments, such as uninterruptible

power supplies, solid state drives, rest buttons, and replication, impact the considerations

discussed in this paper. It is important to be aware of these technologies when developing the

best strategy for your situations.

4.1 Uninterruptible Power Supplies

An uninterruptible power supply (UPS) is designed to provide emergency power in case of a

power failure. This can be helpful by providing enough time for the system to shut down properly

after loss of power. If the UPS is able to communicate with the computer's operating system, it

can signal a shutdown in this event. The operating system can begin closing applications in an

orderly manner while powered by the UPS.

The operating system will typically flush is own cache to disk during shutdown. It may not cause

the disk controller to flush its cache.

If the UPS signals a shutdown, and c-treeACE is properly configured, it should cleanly shut down
in this situation. The UPS must be properly configured to safely shut down the computer and
c-treeACE Server before the UPS battery fails.

4.2 Solid State Drives

Because a solid state drive (SSD) has no moving parts, it can provide excellent performance and

longevity. Unfortunately, not all SSDs are designed to provide data integrity in case of power

failure. Because of this, some SSDs may not offer recoverability.

Know your drive. It is important when choosing a solid state drive to read its specifications

carefully. Pay particular attention to specifications that pertain to reliability and recoverability. In

addition, run tests on the drive you have selected so you can observe first-hand their behavior in

case of a power loss.

WARNING: It is important to understand the devices used in your system.

The Impact of Other Technologies

All Rights Reserved 14 www.faircom.com

4.3 The Big Red Button

The power button and the reset button are not necessarily designed to shut down the system in

an orderly manner. They may shut off the power or initiate a microprocessor reset without

allowing any caches to flush, which can result in data corruption. It is always important to perform

a proper system shutdown to ensure data integrity.

4.4 Replication

The use of replication can enter into considerations about data integrity because it can be used to

create a synchronized copy of the data. Because of the high-performance of FairCom replication

solutions, the synchronization is done in nearly real-time. If a catastrophic failure occurs on the

main server, almost all data can be recovered from the replicated copy. There is, however, no

guarantee that every transaction can be recovered from the replicated copy. Only completed

transactions are replicated and there is some delay in propagating them to the replicated copy.

Replication is only available when transaction processing is used. It also requires a unique index.

All Rights Reserved 15 www.faircom.com

Chapter 5

5. Configuration Considerations

The configuration options provided by FairCom c-treeACE offer considerable control over

parameters that affect caching and performance. By adjusting these settings to suit the needs of

your individual files, you can fine tune the system for the optimal tradeoff between performance

and data integrity.

The chart below shows how to configure your system for your needs:

Description Requirements Configuration

Fast & Scary

Performance is everything and
data recovery is not a
consideration (e.g., temporary
information, such as session
settings, etc.).

Do not use these settings
for critical data.

No transaction processing.

Prudent

Good trade-off between
performance and
recoverability.

No transaction processing or PreImage
transaction processing.

Å Call ctflush periodically to ensure files are

written to disk.

Å COMPATIBILITY FORCE_WRITETHRU

Å COMPATIBILITY WTHRU_UPDFLG

Å Use a small cache size to reduce data loss.

Safety First

When recoverability is crucial
and performance is a
secondary consideration (e.g.,
mission-critical records,
financial data, billing
information, etc.).

Full transaction processing.

Å Increase the CHECKPOINT_INTERVAL for more

performance.

Å Use LOG_TEMPLATE to speed up creation of

logs.

Å Set the size of the log files (LOG_SPACE).

Å Adjust commit delay for best performance
without sacrificing recoverability.

All Rights Reserved 16 www.faircom.com

Chapter 6

6. Best Practices

Understand your cache stack

Learn which layers of caching are helping performance and reliability (e.g., the cache

provided with c-treeACE and, possibly, cache that is integrated with the OS and any UPS so

that it will be flushed in case of a failure.

Know your drives

It is important to read their specifications carefully, paying attention to reliability and

recoverability. There is no substitute for performing tests to determine the best settings for

your environment:

Å Use the c-treeACE Load Test Utility to get a general overview of performance on your

system. This test program is supplied with the c-treeACE Professional Developer's Kit.

Å Use your own application and sample data to experiment with different settings.

Disable disk controller caching

For the best data integrity, disable caching provided by your disk controller.

Use an uninterruptible power supply (UPS)

It may go without saying: Be sure your critical systems are connected to a UPS. Be sure that,

if a failure occurs, the UPS will initiate a proper operating system shutdown before the battery

is exhausted.

Checklist

In evaluating your configuration, consider the questions in this checklist:

1. Which file system are you using and what cashing options does it provide?

2. Which layers of cache do you have on your system (file system, disk controller, etc.)?

3. Do you have an uninterruptable power supply available?

Å Have you properly configured the UPS to bring the system down cleanly before the

battery is exhausted?

Å Have you tested to be sure the c-treeACE Server will be brought down in a safe manner

by your UPS-invoked shutdown?

4. Should disk write cache be enabled?

5. (Linux) What is the best setting for the barrier option? For more about caching on Linux, see
the FairCom White Paper Linux File System Performance and Safety Advisory
(http://docs.faircom.com/wp/linux_change/#cover.htm).

6. What is the best setting for commit delay?

http://docs.faircom.com/wp/linux_change/#cover.htm

All Rights Reserved 17 www.faircom.com

7. Index

B
Background Flushes ... 9
Best Practices ... 16
Best Practices - Caching vs. Data Integrity 1

C
caching .. 1, 2, 3, 11, 15, 16
check point .. 6
CHECKPOINT_INTERVAL 15
COMMIT_DELAY ... 6
COMPATIBILITY FORCE_WRITETHRU 15
COMPATIBILITY LOG_WRITETHRU 9
COMPATIBILITY TDATA_WRITETHRU 9
COMPATIBILITY TINDEX_WRITETHRU 9
COMPATIBILITY WTHRU_UPDFLG 15
Configuration Considerations 15
ctflush ... 15
CtreeFlushFile() .. 7, 9
ctreesql and ctsrvr .. 1
cttrnmod .. 3

D
Data and Index Caching ... 2
data integrity ... 15
Data Recovery .. 2
Disk Caching ... 2
disk caching and platter 3, 16
disk controller .. 3
disk IO ... 2

F
FairCom Caching and Transaction Control 3
FCRP_ERR .. 11
file system ... 3
Flushing Log Files to Disk .. 9
Full Transaction Processing 6

H
hardware caching ... 3

I
index caching .. 2

K
KEEPOPEN Files ... 9

L
Linux ... 16
LOG_SPACE .. 6, 15
LOG_TEMPLATE ... 6, 15
LRU ... 2

N
No Transaction Processing9

P
performance vs. integrity 15
physical medium ...3
platter ..3
PreImage Transaction Processing7
PREIMG (PreImage) 3, 5, 7, 11, 12
Properties of Cached Files 11
Properties of WRITETHRU Files 12

R
recovery ..2
Replication ... 14
reset button .. 14

S
safety ... 15
Solid State Drives .. 13

T
The Big Red Button.. 14
The Cache Stack ..3
The Impact of Other Technologies 13
Transaction Processing 3, 5, 6
TRNLOG .. 6, 7, 11

U
UNBUFFERED_IO..3
Uninterruptible Power Supplies 1, 13, 16

V
virtual machine ..3

W
When to Use Non-Transaction Files9
When to Use PREIMG Files7
When to Use WRITETHRU Files 12
WRITETHRU Files 9, 11, 12

	1. Best Practices - Caching vs. Data Integrity
	1.1 The effects of caching on data recovery

	2. Disk Caching
	2.1 Data and Index Caching
	2.2 Data Recovery
	2.3 The Cache Stack
	2.4 FairCom Caching and Transaction Control

	3. Transaction Processing
	3.1 Full Transaction Processing
	3.2 PreImage Transaction Processing
	3.2.1 When to Use PREIMG Files

	3.3 No Transaction Processing
	3.3.1 When to Use Non-Transaction Files

	3.4 Flushing Log Files to Disk
	3.5 Properties of Cached Files
	3.6 WRITETHRU Files
	3.6.1 Properties of WRITETHRU Files
	3.6.2 When to Use WRITETHRU Files

	4. The Impact of Other Technologies
	4.1 Uninterruptible Power Supplies
	4.2 Solid State Drives
	4.3 The Big Red Button
	4.4 Replication

	5. Configuration Considerations
	6. Best Practices
	7. Index

