

User Guide

Replication Agent

Contents

1. c-treeACE Data Replication Overview .. 1

c-treeACE Data Replication Overview

All Rights Reserved 2 www.faircom.com

1.1 Specific Replication Requirements ... 2

2. c-treeACE Replication Quick Tour .. 3

2.1 Configure the Replication Agent Environment .. 4

2.2 Prepare the Source and Target for Replication .. 9

2.3 Test Replication ... 10

Start the Replication Agent ... 10

Start the Source Instance of the ctixmg Example ... 11

Add Data to the c-treeACE Data Source .. 12

Start the Target Instance of the ctixmg Example .. 13

View Data on the c-treeACE Data Target ... 13

2.4 Done .. 14

3. c-treeACE Replication Configuration ... 15

3.1 Initial Data Synchronization .. 15

3.2 Selection of Replicated Files .. 17

3.3 DIAGNOSTICS REPLICATE.. 17

3.4 Important - Replication Log Management .. 18

3.5 Assign a Server Node ID to a Replication Agent .. 19

3.6 Specify Required Node IDs for Source and Target ... 19

3.7 Read Buffering for Improved Replication Throughput ... 20

3.8 Replicating Auto-Incrementing Values ... 21

3.9 Enhance Performance of Checkpoint that Persists Readers' Log Positions
on Source Server ... 22

4. Replication Agent .. 23

4.1 Synchronizing Out-of-Date Target Files ... 23

4.2 Replication Agent Overview ... 23

4.3 Bidirectional Replication ... 24

4.4 Installing the Replication Agent .. 25

4.5 Installing the Replication Agent as a Windows Service 26

4.6 Configuring the Replication Agent .. 27

Example Configuration File ... 28

batch_size ... 29

check_update .. 29

debug_minlog .. 29

exception_logging ... 29

exception_mode .. 30

function_timing .. 30

c-treeACE Data Replication Overview

All Rights Reserved 3 www.faircom.com

lock_retry_count .. 30

lock_retry_sleep .. 30

log_change_details ... 31

notify_events ... 31

read_timeout_ms .. 32

redirect .. 32

remember_log_pos ... 32

socket_timeout .. 33

source_authfile .. 33

source_nodeid ... 33

source_server ... 33

start_position ... 34

target_authfile ... 34

target_nodeid .. 34

target_server ... 34

unique_id ... 35

TLS Support for Replication .. 35

Passing Replication Agent Command-Line Options to Its Internal Server 36

4.7 Redirect Files to Alternate Locations .. 36

4.8 Persistence of Replication Agent State .. 37

4.9 Starting Replication from a Known Log Position ... 38

4.10 Using the Dynamic Dump to Synchronize Data for Replication 38

4.11 Correctly Terminate Orphaned Replication Agent Source and Target
Server Connections ... 39

4.12 Record Lock Error Retry and Diagnostics .. 40

4.13 Replication Agent Exceptions and Errors ... 41

4.14 Troubleshooting Replication Issues ... 42

5. c-treeACE Replication Utilities .. 44

5.1 repadm Replication Agent Administrator .. 44

5.2 ctrepd Replication Transaction Log Utility .. 47

Setting the Source Server's Log Requirements .. 50

Example: Changing Replication Agent's Required Minimum Log 51

5.3 cttctx Performance Test Utility .. 52

5.4 ctrepd Replication Debug Utility ... 53

6. Synchronous Replication Model for Enhanced Local Performance 54

6.1 Quick Start Guide ... 56

Install c-treeACE on the Master System ... 57

Install c-treeACE on the Local System ... 60

Configure and Start the Replication Agent ... 62

c-treeACE Data Replication Overview

All Rights Reserved 4 www.faircom.com

Run the ctixmg ISAM Example and Watch Replication .. 65

6.2 Local Replica Synchronization ... 65

Configuration ... 65

Client Connection Mode .. 66

Pass-through Operations .. 67

Client Shared Library Loading .. 68

7. Building Custom c-treeACE Data Replication Solutions with the

Replication API... 69

7.1 c-treeACE Replication Overview .. 70

7.2 Building a c-treeACE Library Supporting Replication ... 70

7.3 Using Data Replication - Data Source Operations .. 70

Initializing Replication Support .. 71

Connecting to a c-treeACE Data Source .. 71

Requesting Persistent Logs from a c-treeACE Data Source .. 71

Enabling Replication for a c-treeACE Data File .. 71

Changing the Buffer Structure .. 72

Reading Records from c-treeACE Data Source Files ... 72

Setting the Start Position .. 73

Reading Changes ... 73

Terminating Replication Support ... 73

7.4 Using Data Replication - Data Target Operations... 74

Initializing Replication Support .. 74

Connecting to a c-treeACE Data Target ... 74

Applying Changes to Files on a c-treeACE Data Target .. 74

Reading a Record by Unique Key Value on a c-treeACE Data Target 75

Terminating Replication Support ... 75

7.5 Custom Transaction Log Entries .. 75

8. c-treeACE Replication API Function Reference ... 77

A. Appendix A - Error Codes ... 122

B. Troubleshooting Tips .. 123

9. Index ... 127

All Rights Reserved 1 www.faircom.com

1. c-treeACE Data Replication Overview

The c-treeACE database engine provides a flexible set of facilities for data replication between

servers. The c-treeAMS® Replication Agent implements this mechanism through transactional

replication. Transactional replication is based upon the transaction logs maintained by a

c-treeACE database engine. Changes are read from the transaction logs of one c-treeACE

database engine and applied to another.

At its simplest, replication copies data between a source and a target. It reads changes to the

database on the source server (sometimes called the "master") by reading its transaction log. It

writes those changes to the database on the target server (sometimes called the "slave"). This

process is "single-directional" replication.

c-treeACE replication also supports bi-directional replication in which a second Replication Agent

is installed with the source and target reversed so it copies changes in the opposite direction.

(With bi-directional replication the terms "source" and "target" or "master and "slave" are less

intuitive because the source for one Replication Agent is the target for the other. In this case,

each c-treeACE server is simply a "replica" of the other.) In the figure below, Replica Server A is

the source for the Replication Agent in the upper-left corner and Replica Server B is the source

for the Replication Agent in the lower-right corner:

Many models of replication exist to solve various data access, performance, and business

continuity strategies including, and certainly not limited to:

¶ A single Master/Slave model for failover and backup

c-treeACE Data Replication Overview

All Rights Reserved 2 www.faircom.com

¶ The Active-Active model for performance, load balancing, and redundancy

¶ A single Master with multiple Slaves model for local performance and a central repository

¶ Local/master Synchronous replication (V11 and later) in which one server is a designated

master server with multiple local servers

Note: Due to requirements in the format of the transaction logs, logs from c-treeACE with
replication enabled are only compatible with Versions 8.27 and later of c-treeACE.

1.1 Specific Replication Requirements

Note: It is important to ensure that the keep the Replication Agent version is in sync with the
versions of the c-treeACE Server running on the source and target. It is important to install
exactly the same build in all of these places.

Transaction Processing

The c-treeACE replication feature relies on a transaction log based facility. Your files must be

under transaction control to take advantage of c-treeACE replication. Review the c-tree

Programmerôs Reference Guide for complete information on data integrity and enabling

transaction processing at the file level.

Indices

For a file to be replicated there must be a unique qualifying replication index on that file. Several

conditions must be met for an index to qualify as a replication index. The following points describe

these conditions:

1. The index must be unique.

2. The index must not have null key support enabled.

3. The index must not have a conditional index expression.

4. The index must be a permanent (not temporary) index.

5. Low-level updates are not allowed on files marked for replication.

Note: Indices with serial segments (SRLSEG) and/or IDENTITY support require additional
configuration considerations as described in Replicating Auto-Incrementing Serial Segment
Values (page 21).

IFIL Resource

The data files being replicated must contain an IFIL resource.

All Rights Reserved 3 www.faircom.com

2. c-treeACE Replication Quick Tour

To get started with c-treeACE data replication, we have created a short tutorial sequence to

follow. You should quickly be able to set up and observe a fully replicated data solution following

these steps.

Here is an overview of the procedures you will perform:

1. Configure and start the c-treeACE data source and data target database engines. See Up
and Running with the c-treeACE Database Engine.

2. Get the data source ready. If you are adding replication to an existing system, you will
already have this c-treeACE server installed. You will need to edit its ctsrvr.cfg file to add

SERVER_NAME and REPLICATE <filename> keywords. See Prepare the c-treeACE Data

Source.

3. Get the data target ready. You will need a c-treeACE server installed on the target server.

You will need to edit its ctsrvr.cfg file to add SERVER_NAME keyword. See Prepare the

c-treeACE Data Target.

4. Start the Replication Agent running by running the ctreplagent executable. See Start the
Replication Agent (page 10).

c-treeACE replication is very easy to get started. Keep these tips in mind:

1. Ensure your data files have Transaction Processing support enabled, as well as supporting
specific index requirements. (See Specific Replication Requirements (page 2).)

2. Enable c-treeACE replication support in the server configuration file, ctsrvr.cfg. (See Enabling
Replication for a c-tree Data File (page 71).)

REPLICATE <filename>

3. Run the supplied Replication Agent executable, ctreplagent, and connect to the source and
target servers to begin replicating data. (See Replication Agent (page 23).)

#ctreplagent

This tutorial requires the following:

¶ 2 c-treeACE database engines operating in distinct locations

¶ 2 Instances of the c-tree ctixmg ISAM Example

¶ 1 Instance of the Replication Agent, ctreplagent

Letôs get started!

c-treeACE Replication Quick Tour

All Rights Reserved 4 www.faircom.com

2.1 Configure the Replication Agent Environment

In this step we configure and start the c-treeACE data source and data target

database engines.

File Location

You will find your c-treeACE Server in the bin\ace\sql or bin\ace\isam directory of your c-treeACE

installation.

You will find your tools and utilities located in the tools\ directory of your c-treeACE Server

installation.

The License Authorization File is a binary file containing unique licensing information assigned

by FairCom. This licensing information permits the c-treeACE Server technology to operate on a

specified operating system, to support specific features, to support a fixed number of concurrent

users and/or connections to the c-treeACE Server technology, and to utilize a fixed number of

CPUs on the host machine.

The license file is named ctsrvr-<SN>.lic where <SN> is the unique Serial Number assigned to

your server instance and provided by FairCom. This file will need to be properly placed in the

same directory where the c-treeACE Server binary is located, for example:

C:\FairCom\V11*\<platform>\bin\ace\sql\

An example developer license is shown below:

<?xml version="1.0" encoding="us - ascii"?>

<ctlicense version="2">

 <version>11</version>

 <serial>39000010</serial>

 <OEM>1</OEM>

 <lictype>Development</lictype>

 <cpus>2</cpus>

 <servtype>ALL (Standard - SQL)</servtype>

 <users>32</users>

 <privat e>EDE . . . QGP</private>

 <checksum>LE47LG9DNM06IA30CGAFFO00NMCEJL59</checksum>

</ctlicense>

Note that you can read the most relevant sections of this XML file in plain text regarding serial

numbers, connection and CPU counts. If this licensing file isnôt present, you'll receive a 960 error

in your CTSTATUS.FCS status log upon startup:

"LICENSE ERROR: License initialization failed: Missing license file."

The Developer edition of the c-treeACE Server included with the c-treeACE Professional package

includes a ctsrvr-<SN>.lic file configured to support up to 32 concurrent connections and can

operate on up to 2 concurrent CPU cores (as reported by the operating system which may

include physical CPUs, CPU cores, or virtual CPUs assigned to a partition).

c-treeACE Replication Quick Tour

All Rights Reserved 5 www.faircom.com

Development servers are licensed exclusively for development and testing purposes and only by
the developer who is the license holder. They are expressly not authorized for production use.
Should you need additional licenses for testing or if you wish to test with a license file supporting
a greater number of connections or CPUs, please contact your nearest FairCom office.

When purchasing a production c-treeACE Server license, you will receive a ctsrvr-<SN>.lic file via

e-mail, along with a ñProof of Entitlementò document that summarizes the configuration of your

c-treeACE Server license file.

Starting c-treeACE

There are many options to start the c-treeACE Server depending on your platform.

Windows

¶ As a Windows Service

Å The Windows Service Manager - If you installed c-treeACE on a Microsoft Windows

system, c-treeACE is installed and started by default through the installer. You can verify

and manage server operation via the standard Windows service application via your

administrative control panel application.

Å The net start command line function. For example:

>net start "c - treeACE Database Engine"

¶ As a Console or ToolTray Application - Simply double-click the executable in the ace/bin/sql

directory.

Note: When connecting via a network, be aware that the TCP/IP port should be allowed by
any local firewalls. Many modern operating systems include these security features by
default. If you cannot connect with remote clients, you may need to specifically allow the
c-treeACE Server port.

Unix

Unix, Linux, and Mac OS X users can use the included start scripts.

¶ ./startace

c-treeACE Replication Quick Tour

All Rights Reserved 6 www.faircom.com

This script is provided as a "C" shell script and will work in most Unix shell environments. You are

free to modify and tailor it to suit your local requirements.

Stopping c-treeACE

By default, the c-treeACE Server requires an administrator password to initiate a server

shutdown. The default (and permanent) administrator account is ADMIN with an initial default

password of ADMIN.

The Windows Service does not require the administrator password as it is assumed the

c-treeACE Server is running under administrative privileges.

Note: If the Replication Agent is running on a server, replication should be
stopped before trying to stop the server. If replication is running when you
attempt to stop the server, you will see error 792 (External server shutdown
disabled). CTREEACE-2788

Windows

¶ c-treeACE Monitor - Use the c-treeACE Monitor tool for Windows and stop the server.

¶ Windows Service - Select and stop the c-treeACE service via the windows service

administrator.

¶ ToolTray - Right-click on the tool tray icon and select the appropriate shutdown option.

¶ Console - Exit the console application via the menu or the standard Windows "X" in the

corner.

¶ ctadmn - The c-treeACE Administrator utility provides an option to shut down the server.

¶ ctstop - The c-treeACE stop utility can be used to shut down the server.

¶ The net stop command line function. For example:

>net stop "c - treeACE Database Engine"

Unix, Linux, and Mac

¶ ctadmn - The c-treeACE Administrator utility provides and option to shut down the server.

¶ ctstop - The c-treeACE stop utility can be used to shut down the server.

¶ ./ctstop - A Unix shell script preconfigured to stop the server.

c-treeACE Replication Quick Tour

All Rights Reserved 7 www.faircom.com

¶ Kill the server from a Unix command line. The c-treeACE Server traps the SIGSTOP signal.

#kill <c - treeACE PID>

Links to c-treeACE Manuals

For complete information, view the online manuals:

¶ c-treeACE Administratorôs Guide (http://docs.faircom.com/doc/ctserver)

¶ c-treeACE SQL Operations Guide (http://docs.faircom.com/doc/sqlops/)

http://docs.faircom.com/doc/ctserver
http://docs.faircom.com/doc/sqlops/

c-treeACE Replication Quick Tour

All Rights Reserved 8 www.faircom.com

Configuring the Replication Agent

Configuration File

The c-treeACE Server is configured with an easy-to-maintain text-based configuration file,

ctsrvr.cfg, located in the server directory. No registry entries are required. No complicated menus

or interfaces. Simply edit this file and restart your server to change any options.

Options

¶ Communication Protocols - c-treeACE supports many common communication options. Be

sure to have one or more of these enabled in your configuration file.

Å Shared Memory (FSHAREMM) - The default on Windows when connecting locally.

Å TCP/IP (F_TCPIP) - The default client/server protocol for connecting via a network.

Å TCP/IP IPv6 (F_TCPIPV6) - The client/server protocol for connecting via TCP/IP using an

IPv6 socket.

Å TCP/IP (FETCPIP) using CAMO - Protect your communications channel using CAMO.

Note: CAMO or "Camouflage" is an older, legacy method of hiding data, which is not a

c-treeACE Replication Quick Tour

All Rights Reserved 9 www.faircom.com

standards-conforming encryption scheme, such as AES. It is not intended as a

replacement for Advanced Encryption or other security systems. In V11.5 and later,

c-treeACE supports TLS/SSL to protect data in transit between the network client and the

c-treeACE Server. See Transport Layer Security Secures Data in Transit between

Network c-treeACE Clients and Servers

(https://docs.faircom.com/doc/ctreeplus/69683.htm).

Å NetBIOS - This protocol has been deprecated.

Note: When connecting via a network, be aware that the TCP/IP port should be allowed by
any local firewalls. Many modern operating systems include these security features by
default. If you cannot connect with remote clients, you may need to specifically allow the
c-treeACE Server port.

¶ Directory Locations

¶ Memory usage

¶ Transaction Control

Caching Options

You can greatly improve performance with the advanced caching options available with

c-treeACE. By maintaining more of your data and index files in cache allows much quicker access

by clients. Separate cache areas are used for data and index files and can be adjusted

independently of each other with the following configuration keywords.

¶ DAT_MEMORY

¶ IDX_MEMORY

See Also:

¶ See the chapter titled c-treeACE Replication Configuration (page 15) for more information

about configuring replication.

¶ View the complete c-treeACE Server documentation (http://docs.faircom.com/doc/ctserver)

for many more advanced options and take advantage of enhanced cache performance.

2.2 Prepare the Source and Target for Replication

In this step we start the Replication Agent and connect the ISAM example utility to

both the source and target servers.

Prepare the Source

c-treeACE Source Replication Configuration

Be sure each c-treeACE database engine is installed into its own separate directory. You cannot

operate two engines in the same directory due to transaction log file collisions.

Edit ctsrvr.cfg for the Data Source server and name this instance of c-treeACE FAIRCOMS:

https://docs.faircom.com/doc/ctreeplus/69683.htm
http://docs.faircom.com/doc/ctserver

c-treeACE Replication Quick Tour

All Rights Reserved 10 www.faircom.com

SERVER_NAME FAIRCOMS

To enable replication of all data files for this example, add the following configuration keyword:

REPLICATE *

Note: This is a simplified example that would replicate all files. Certain FairCom files, such as
REPLSTATEDT.FCS, must not be replicated. It is important to use a more specific wild card that

excludes the REPLSTATEDT.FCS file, such as REPLICATE *.dat .

Prepare the Target

c-treeACE Data Target Replication Configuration

Edit ctsrvr.cfg for the Data Target server and name this instance of c-treeACE FAIRCOMT. (Be

sure this second engine resides in its own directory.)

SERVER_NAME FAIRCOMT

Start the c-treeACE Target Engine

Follow the procedure for starting c-treeACE as noted in the proceeding section, Prepare the

c-treeACE Data Source.

2.3 Test Replication

In this step we test replication by adding data to the data source and watching it

replicate to the data target.

Start the Replication Agent

To begin replicating c-treeACE data, start the replication engine utility, ctreplagent.

#ctreplagent

The Replication Agent connects to both the data source and the data target and begins

replicating transactions as they occur.

You will find something similar to the following output in ctreplagent.log when the utility connects

and the transactions are processed:

Source server name : FAIRCOMS

Target server name : FAIRCOMT

Transactions per commit : 1

Starting log position : 0

Operating mode : Read and apply changes;

 Wait when end of log data is reached.

Replication log reader connected to data source.

Connected to data target.

Starting scan with log 1, position 1

Processing log 1

Reached end of log data. Waiting for next log entry...

c-treeACE Replication Quick Tour

All Rights Reserved 11 www.faircom.com

Reached end of log data. Waiting for next log entry...

Reached end of log data. Waiting for next log entry...

Using an Encrypted Authentication File

This utility supports the use of an encrypted password file. Encrypted password files keep user

IDs and passwords from plain view when the utility is used within a script file. They are created

with the ctcmdset utility. The plain text form of the file should be:

; User Id

USERID ADMIN

; User Password

PASSWD <pass>

Start the Replication Agent using the -a option to specify the name of the encrypted file.

Start the Source Instance of the ctixmg Example

For this tutorial we will use the c-treeACE interactive ISAM Example, ctixmg. This example is

built when you include utilities and examples in your mtmake projects. The source code can be

found in: ctree\samples\isam

With ctixmg, we can add, view, update, and delete records under full transaction control. As the

files from this example meet all the criteria for c-treeACE replication, we can easily replicate them

to a second data target. We can then view and modify the data on the data target with a second

instance of ctixmg.

Locate ctixmg in your c-treeACE installation and start an instance of this example in a separate

command prompt window as follows:

#ctixmg ADMIN ADMIN FAIRCOMS

When prompted to "Encrypt this file" choose no (n). You should see something similar to the

following session:

c- tree Plus(R) Version 9

Incremental ISAM Example

The example customer file does not exist. We will now create it.

Do you wish to Encrypt this file (Y/N)?n

 Attempting to create.

File created successfully.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

You are now connected to the c-treeACE data source.

Choose óSô to verify no data in the file. You are prompted for a method to scan. Choose óNô to

scan by name, and press enter. Your scan should fail with c-tree error INOT_ERR (101)

indicating the end of file was encountered with no matching records.

Your session should appear similar to something like the following:

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit: S

SCAN SEQUENCE SET

Scan b y N)ame Z)ip Code or Q)uit>> N

c-treeACE Replication Quick Tour

All Rights Reserved 12 www.faircom.com

Enter Last Name: Jones

SCAN failed at start with codes 101 1

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

Add Data to the c-treeACE Data Source

To watch c-treeACE data replication take place, we will add data to the data source server. Using

the ctixmg session connected to the c-treeACE data source, do the following to add a record to

the data file:

Choose óBô to Begin a transaction.

Note: You must begin a transaction for it to be replicated.

Choose óAô to Add a record.

Your session may look something similar to the following:

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit: B

Successful transaction begin.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit: A

ADD NEW DATA

1. Number :1001

2. Last Name :Mouse

3. First Name :Mickey

4. Address :Magic Kingdom

5. City :Orlando

6. State Abrev :FL

7. Zip Code :32830

Successful Addition.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

For the data to be replicated, it must be part of a complete transaction. To commit the transaction,

you need to E)nd.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e poin t res(T)ore Q)uit: E

c-treeACE Replication Quick Tour

All Rights Reserved 13 www.faircom.com

Successful transaction commit.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

A scan of the data will display your entry:

A)dd U)pdate S)equence Set B)egin TRA N E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit: S

SCAN SEQUENCE SET

Scan by N)ame Z)ip Code or Q)uit>> N

Enter Last Name:

1. Number : 1001

2. Last Name : Mouse

3. First Name : Mickey

4. Address : Magic Kingdom

5. City : Orlando

6. State Abrev : FL

7. Zip Code : 32830

Enter field # to change data or N)ext, P)revious D)elete or E)nd scan>> E

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e poin t res(T)ore Q)uit:

Now go to the c-treeACE data target and find the information replicated there.

Start the Target Instance of the ctixmg Example

Open a second command prompt window and start a second instance of this example as follows:

#ctixmg ADMIN ADMIN FAIRCOMT

Repeat the steps from the previous instance to create the file and verify no records are found in

the data files on the target server.

Note: It is important that the files exist on both database engines before replication begins.

View Data on the c-treeACE Data Target

With the ctixmg example connected to the c-treeACE data target, execute a scan to view the

data that has been replicated from the c-treeACE data source.

A)dd U)pdate S) equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit: S

SCAN SEQUENCE SET

Scan by N)ame Z)ip Code or Q)uit>> N

Enter Last Name:

1. Number : 1001

2. Last Name : Mouse

3. First Name : Mickey

c-treeACE Replication Quick Tour

All Rights Reserved 14 www.faircom.com

4. Add ress : Magic Kingdom

5. City : Orlando

6. State Abrev : FL

7. Zip Code : 32830

Enter field # to change data or N)ext, P)revious D)elete or E)nd scan>> E

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

2.4 Done

Congratulations!

Youôve just constructed and managed a complete c-treeACE data replication solution.

Stop the Replication Agent by pressing Ctrl-C or use the stop option in the Replication

Agent Administrator.

All Rights Reserved 15 www.faircom.com

3. c-treeACE Replication Configuration

The c-treeACE source server (or "master") is a standard c-treeACE database engine. Local

c-treeACE database engines connect to the source when instructed to do so through their client

connections. When connected in such a manner, all updates from the local server are

"passed-through" to the master. The master server can then be configured to replicate its central

repository of files back to all the local servers through the Replication Agent.

3.1 Initial Data Synchronization

When adding a server to a replicated system it is important to pause log purging on the source

server before copying the files. This prevents activity on the source server while the files are

being copied, which would cause any transaction logs to be deleted.

You will need to start the Replication Agent reading the source server's transaction log at the

position that corresponds to the point in time where you copied the files. To accomplish this, you

must ensure the source server keeps the transaction logs from the time you copied the files until

you have started the new Replication Agent using the procedures in steps 1 and 2 below.

c-treeACE Replication Configuration

All Rights Reserved 16 www.faircom.com

The steps below explain the general approach to adding a server to a replicated system and

starting it at the correct point in time:

1. When you are ready to make a copy of the files from the source server, first run ctstat -var
on the source server and note the server's current log number and log position. For example:

ctstat - var - h 1 - u ADMIN - p ADMIN - s source

name lowlog curlog curpos

source(SERVER) 6 9 9237667

In this example, log 9 is the current log used by the server. We recommend setting the

minimum log to the previous log, in this case log 8.

2. Use the ctrepd utility with the -setlog and -unqid options to instruct the source server to keep
the current log and later logs based on the log number determined in the previous step. For

example, if your new Replication Agent will use the ID MYREPLAGENTID and you want to set

the minimum transaction log to 8, and the source server is named source , use this

command:

c trepd - unqid:MYREPLAGENTID - setlog:8 - s source

name lowlog curlog curpos

source(SERVER) 6 9 9237667

- MYREPLAGENTID 8 0 0

This will cause the source server to keep log 8 and later logs until your new replication

agent has been started and has processed that log's operations.

3. Create a point-in-time copy of the files from the source server. You can use either of these
options:

Å Dynamic Dump - Use dynamic dump to make a copy of the files from the source server,

and then restore them on the target server using the ctrdmp utility. The utility creates the

file ctreplagent.ini containing the log number and log position for your new Replication

Agent to use. This approach has the advantage that the source server is paused only for

a brief time while it reaches a quiet transaction state. The server can then resume normal

operations while the files are copied to the dynamic dump backup file.

or

Å Quiesce & Copy - Use the ctQUIET() function (for example through the ctadmn utility)

to pause the source server and close the files. Run ctstat -var on the source server and

note the server's current log number and log position after you have paused the source

server. Make a copy of the files using a system copy command, then resume server

operation. In the Replication Agent's working directory, create ctreplagent.ini as a text file

containing two lines:

log_number log_offset

log_number log_offset

For example, if your source server is currently on log 35 at offset 12345678, create

ctreplagent.ini containing:

35 12345678

35 12345678

4. Copy the files created in step 3 from the source server to the target server. If you used
Dynamic Dump in step 3, copy the ctreplagent.ini file from the dump restore area to the
Replication Agent's working directory.

c-treeACE Replication Configuration

All Rights Reserved 17 www.faircom.com

5. After you copy the files to the target server (and create ctreplagent.ini in the Replication
Agent's working directory if you used Quiesce & Copy in step 3), start the Replication Agent.

The Replication Agent looks for the ctreplagent.ini file in its working directory when it starts up. If

it exists, it sets its position to the position specified in the file. It then deletes the ctreplagent.ini file

so it does not use that position again the next time it starts. If you used Dynamic Dump in step 3,

the Replication Agent will find the correct starting point in the ctreplagent.ini created by the

dynamic dump restore that you copied to the Replication Agentôs working directory.

Using ctstat -var on the source server, you should be able to see the Replication Agent is now

connected and is progressing in processing the transaction logs.

3.2 Selection of Replicated Files

The source replica only needs to specify which files are required to be replicated via the

Replication Agent. The REPLICATE keyword

REPLICATE <filename>

is used to specify which file(s) to enable transaction log information for replication. Multiple

REPLICATE statements are allowed. The file name may include wildcard characters (see

c-treeACE Standard Wildcards).

Note: Choose your wild cards carefully because certain FairCom files, such as

REPLSTATEDT.FCS, must not be replicated. For example, REPLICATE *.dat is preferable to

REPLICATE * .

Individual files can also be enabled programmatically through the replication API call

ctReplSetFileStatus().

Note: The low-level c-treeACE UpdateHeader() API can be used to enable replication on a per
file basis. Use the ctREPLCIATEhdr mode with either NO (off) or YES (on) for the hdrval. If the
file does not have an extended header, then the change will not persist once the file is closed and
reopened. Because failure to enforce replication is a serious problem, UpdateHeader() returns a
special error code, -EXTH_ERR (-734), when the request succeeds, but the file header is not

extended. This is more of a warning than an error.

3.3 DIAGNOSTICS REPLICATE

The configuration option DIAGNOSTICS REPLICATE enables c-treeACE to log messages to

CTSTATUS.FCS when a file that is being created or opened matches the filename specified for

the REPLICATE keyword, and it does not meet replication requirements. This is useful in initial

setup to determine unexpected replication failures.

Sample Output
Mon Apr 09 10:48:21 2012

 - User# 00014 REPLICATE_DIAG: None of the indices for the file mark.dat qualify as a replication

unique key:

Mon Apr 09 10:48:21 2012

c-treeACE Replication Configuration

All Rights Reserved 18 www.faircom.com

 - User# 00014 REPLICATE_DIAG: index 1 is not unique

Mon Apr 09 10:48:21 2012

 - User# 00014 REPLICATE_DIAG: index 1 supports null keys

Mon Apr 09 10:48:21 2012

 - User# 00014 REPLICATE_DIAG: index 2 is not unique

Mon Apr 09 10:48:21 2012

 - User# 00014 REPLICATE_DIAG: index 3 is not unique

Mon Apr 09 10:48:21 2012

 - User# 00014 REPLICATE_DIAG: index 3 supports null keys

Mon Apr 09 10:48:21 2012

 - User# 00014 REPLICATE_DIAG: index 3 contains a SRLSEG segment

The SetSystemConfigurationOption() API function can be used to turn this diagnostic option on

and off at run time.

3.4 Important - Replication Log Management

Transaction Log Limit for the Replication Agent

Note: This is a Compatibility Change for c-treeACE V11.5 and later.

The Replication Agent thread for TRNLOG files reads transaction logs and informs the server of

their minimum transaction log requirements.

c-treeACE Server now limits by default the number of active transaction logs that are kept

for Replication Agent to 50. This default is to avoid potentially running out of critical drive

space.

The following configuration option controls this limit:

¶ MAX_REPL_LOGS <max_logs> - Maximum number of logs to be held specifically for

replication.

This configuration setting does not impact your c-treeACE Server's ability to retain any necessary

logs required for Automatic Recovery.

For more information about this setting (and the related setting for deferred indexing logs) see the

following in the c-treeACE Server Administrators Guide:

¶ Transaction log limit for replication and deferred indexing

(https://docs.faircom.com/doc/ctserver/69967.htm)

¶ MAX_REPL_LOGS (https://docs.faircom.com/doc/ctserver/73803.htm)

¶ MAX_DFRIDX_LOGS (https://docs.faircom.com/doc/ctserver/73802.htm)

KEEP_LOGS Setting to Keep Inactive Logs

c-treeACE does not currently take into account the requirements of the log reader to keep

transaction logs. To ensure the database engine always keeps enough logs to allow the log

reader to process them before they are deleted, use the KEEP_LOGS configuration keyword as

described below.

;Keep all transaction logs

KEEP_LOGS - 1

https://docs.faircom.com/doc/ctserver/69967.htm
https://docs.faircom.com/doc/ctserver/73803.htm
https://docs.faircom.com/doc/ctserver/73802.htm

c-treeACE Replication Configuration

All Rights Reserved 19 www.faircom.com

Specify -1 to keep all logs (in which case old logs must be manually deleted when done), or

specify a positive number that indicates the number of logs to keep. This number should be the

largest number of logs required if the log reader is stopped or falls behind in processing logs.

Also consider the remember_log_position option of the Replication Agent configuration as an

alternative.

3.5 Assign a Server Node ID to a Replication Agent

c-treeACE assigns a node ID to a Replication Agent. The local/master replication scheme also

assigns a node ID to connections that are established from the local server to the master server.

A local c-tree Server can set its replication node ID by using the REPL_NODEID option in

ctsrvr.cfg. For example, consider a master server and two local servers:

; master server configuration

SERVER_NAME MASTER

REPL_NODEID 10.0.0.1

; local server 1 config uration

SERVER_NAME LOCAL01

REPL_NODEID 10.0.0.2

; local server 2 configuration

SERVER_NAME LOCAL02

REPL_NODEID 10.0.0.3

ID values are arbitrary and do not need to match the IP address of the system on which the c-tree

Server is running. They only need to be unique and not change during replication. (This example

demonstrates IP v4 addresses.)

The Replication Agent reads the node ID of the source and target servers. If the node ID is not

set for a source or target server, the Replication Agent uses the IP address of the system on

which that c-treeACE is running.

Note: REPL_NODEID should be used if the entry for source_server or target_server in

ctreplagent.cfg does not specify an IP address (e.g., if localhost or the DNS name is used).

3.6 Specify Required Node IDs for Source and Target

A replicated server node identification can be specified to register a specific Replication Agent

context with an associated server. The REPL_NODEID server configuration is used to set this

identification value.

Replication Agent now supports configuration options to force required node IDs for source and

target servers. These options are set with the following options in ctreplagent.cfg:

source_nodeid <dotted_notation>

target_nodeid <dotted_notation>

c-treeACE Replication Configuration

All Rights Reserved 20 www.faircom.com

Note: Node IDs are expected to be in IPv4 address format, although actual values are arbitrary
and do not need to match any actual IP server address. The main requirement is that node IDs
be unique among all servers participating in replication.

Exception Handling

When this option is used for a source and/or target server, the Replication Agent requires that the

server has set its node ID to that value (using the REPL_NODEID configuration option in

ctsrvr.cfg). If the server has not set the value, the Replication Agent logs the following message to

ctreplagent.log:

Node ID is required for source server but it is not set

If an error occurs retrieving a server node ID, the agent logs this message:

Node ID is required for source server but it cannot be read: error code <errorcode>

If a node ID mismatch is detected when Replication Agent is starting, a message is logged to

ctreplagent.log and the agent shuts down:

Source server node ID is expec ted to be '<expectednodeid>' but is '<actualnodeid>'

If the node IDs match when Replication Agent starts, but the connection to the source or target

server is lost and reestablished, and a node ID mismatch is detected, the Replication Agent logs

an error message but does not terminate. Instead, it continues retrying the connection and

checking for a proper node ID match every 5 seconds.

Replication API

The options can also be set by calling the ctReplAgentSetConfigOption() function.

Example

ctReplAgentSetConfigOption(""source_nodeid"", ""10.0.0.1"", prepstt, lineno, cfgfile);

ctReplAgentSetConfigOption(""target_nodeid"", ""10.0.0.2"", prepstt, lineno, cfgfile);

3.7 Read Buffering for Improved Replication Throughput

c-treeACE has an option allowing the replication log reader thread to read transaction log data

into a buffer for enhanced performance. When a reader requests data that is in the buffer, a

noticeable performance gain can usually be observed. This feature is on by default. The size of

the replication log read buffer can be set using the configuration keyword:

REPL_READ_BUFFER_SIZE 8192

Without this keyword, the default buffer size is 8 KB. A minimum buffer size of 512 bytes is

enforced. A value of zero will disable the replication log read buffer entirely.

c-treeACE Replication Configuration

All Rights Reserved 21 www.faircom.com

To aid in troubleshooting when first using this feature, an additional diagnostic keyword can be

specified to check that the log data is correctly read.

DIAGNOSTICS REPL_READ_BUFFER

3.8 Replicating Auto-Incrementing Values

Serial Segment Values

To support replication of a file that contains an auto-incrementing SRLSEG index, c-treeACE

configuration options are available to control the effect of this value. These values are set in the

respective c-treeACE Server's configuration file.

The SRLSEG mode of indices provides for auto-incrementing values to become part of a data

record. By default, this index precludes the ability to be the replication unique key index.

However, the option is available.

¶ REPL_SRLSEG_ALLOW_UNQKEY YES causes the c-treeACE Server to allow an index that

contains a SRLSEG segment to be the replication unique key.

The actual value of a replicated serial segment value is an application dependent attribute of

replication. To control if this number should be re-assigned or not during replication, the following

options are provided. By default, the serial segment value is re-assigned when applied to the

target server.

¶ REPL_SRLSEG_USE_SOURCE YES causes a c-treeACE Server replication writer thread to fill

in the serial number value from the source server when adding a record to a replicated file.

(Standard replication model.) This preserves existing serial numbering.

¶ REPL_SRLSEG_USE_MASTER YES causes a local c-treeACE Server to fill in the serial

number value from the master c-tree Server when adding a record to a local replica.

(Synchronous master/local replication model (page 54).)

IDENTITY Values

SQL support frequently requires an additional IDENTITY field beyond the c-tree SRLSEG key

mode, already reserved for ROWID values. Replicating IDENTITY values employs additional

options.

¶ REPL_IDENTITY_USE_SOURCE YES causes the target c-tree Server to use the identity field

value from the source c-tree Server when adding a record to a replicated file.

¶ REPL_IDENTITY_USE_MASTER YES causes the local c-tree Server to use the serial number

value from the master c-tree Server when adding a record to a local replica.

IMIS_ERR (958, data record is missing identity field value) is returned by a record add operation

when the supplied record image does not contain the identity field value. (This is an unusual

case, however, could occur if the record image does not contain all the fields for the record.)

Note: These options also do not address issues of bidirectional replication involving files
containing SRLSEG and/or IDENTITY.

c-treeACE Replication Configuration

All Rights Reserved 22 www.faircom.com

3.9 Enhance Performance of Checkpoint that Persists

Readers' Log Positions on Source Server

A replication log reader periodically informs the source server of its current required minimum

transaction log by writing a checkpoint to the logs, which causes all updated data cache pages

and index buffers for transaction controlled files to be flushed. This can have a notable

performance impact, in particular when using the LOGIDX index option.

In V11 and later, the recording of the readers' log requirements has been changed so that the

checkpoint does not cause a flushing to occur. This checkpoint will now flush only the updated

cache pages and index buffers whose first update was enough checkpoints ago that it is time to

flush them (as determined by the CHECKPOINT_FLUSH configuration option). This change results

in enhanced performance compared to previous releases.

All Rights Reserved 23 www.faircom.com

4. Replication Agent

The Replication Agent is a c-treeACE component acting as a conduit to pass data from

transaction log entries on a master server to a local server. The Replication Agent is responsible

for establishing connections to both c-treeACE database engines, maintaining a current position

in case of connection failures, and logging exceptional transactions that cannot be reliably

replicated.

4.1 Synchronizing Out-of-Date Target Files

Ideally, the target file in a replication environment would never be out-of-sync with the source. In

some situations, the target server or the Replication Agent goes down or loses its connection.

When all parts of the system are up again and the connections are reestablished, the Replication

Agent is able to catch-up with all the updates that must be applied from the moment that it

stopped replicating. Although it may take some time to apply the missing updates from the

backlog, it should not miss any. Unfortunately, some problems could happen in this process,

making it possible that the replica file might get out-of-sync. Some examples:

¶ A lost transaction log file from the source side that was not applied to the target, making it

impossible to bring the target copy back in sync.

¶ A conflict while applying the modification to the target (perhaps an inadvertent update to the

target while replication was inactive).

The Replication ReSync feature provides a way to stop replication on one or more files in a

replicated environment and resynchronize them. It copies the "current files" from the source

server to the target server and then restarts the replication on these files.

The administrator can use repadm -c resync and repadm -c resyncclean to manage the resync

operation. The new modes allow the user to indicate the name of the source file to be

synchronized. A text file with a list of source file names can be provided in case of multiple files to

be synchronized. Based on the source file name, the Replication Agent identifies the target file

based on the existing redirect rules.

4.2 Replication Agent Overview

The Replication Agent, ctreplagent, provides the ability to replicate data from one c-treeACE

database engine instance to another. The Replication Agent requires two c-treeACE instances

running. Remember, each c-treeACE database engine requires its own working directory, and a

unique server name (TCP/IP Port). The Replication Agent, ctreplagent, acts as a client to both

the c-treeACE master and local database engines.

Locate ctreplagent in the /tools/replication folder of your c-treeACE installation.

Replication Agent

All Rights Reserved 24 www.faircom.com

Note: ctreplagent itself operates as a c-treeACE database engine, and as such, requires its own
separate directory and configuration file, ctsrvr.cfg. To avoid communications port conflicts a

unique SERVER_NAME is also required.

Master Replica Configuration

Be sure the master server is properly configured before starting the Replication Agent. In

particular, determine if you are required to keep all transaction logs. Should the Replication Agent

connection be broken for some reason, it is necessary that the master replica maintain any

needed transaction logs to reestablish the replication operations at the appropriate point in time.

4.3 Bidirectional Replication

Bidirectional replication can be set up between two Servers. If the two Servers are called, for

example, A and B, changes on Server A are propagated to Server B and changes on Server B

are propagated to Server A. The logic is designed so that data changes from Server A that are

replicated to Server B are not then replicated back to Server A.

A server always knows if a client connected to it is a replication "reader" or "writer" or just a

regular client. Information is placed into the log when these clients connect to indicate if an

add/delete/update was done by a regular client or a replication writer. This information is stored in

the node name, which is written as an LLOGNODE entry (and included in checkpoints).

The node name is ctreplr <target_node_id> for a replication reader and

ctreplw <source_node_id> for a replication writer. Notice that these names specify the node

ID of the other system: the reader specifies the target node ID of the source server and the writer

specifies the source node ID of the target server.

REPL_NODEID Keyword

The node ID is based on an IP address, which would cause a problem if the source and target

server were on the same system, because they would have the same IP address. This situation is

handled by the REPL_NODEID (page 19) server keyword, which can be used on the source and

target systems to set their server node IDs.

Example

The example below demonstrates bidirectional replication with source and target servers on the

same system.

Place the following in the source server's ctsrvr.cfg:

SERVER_NAME S1

REPL_NODEID 10.0.0.1

Place the following in the target server's ctsrvr.cfg:

SERVER_NAME S2

REPL_NODEID 10.0.0.2

The REPL_NODEID keyword requires an IP address notation, but they can be any values as long

as they are unique for all the servers participating in the replication.

Replication Agent

All Rights Reserved 25 www.faircom.com

Note: The servers must have unique replication node IDs. If this cannot be ensured (e.g., if both

servers are on the same system), the REPL_NODEID keyword must be used to set unique IDs.

When the two Replication Agents are started:

¶ Replication Agent #1 replicates from Server S1 to S2. On server S1 its node name is

ctreplr 10.0.0.2 , and on Server S2 its node name is ctreplw 10.0.0.1 .

¶ Replication Agent #2 replicates from Server S2 to S1. On server S2 its node name is

ctreplr 10.0.0.1 , and on Server S1 its node name is ctreplw 10.0.0.2 .

The following sequence occurs when a client adds a record on Server S1:

1. A client adds a record on Server S1.

2. The add goes into the transaction log on Server S1 and Replication Agent #2 reads it.

3. Replication Agent #2 sees that this change is from a regular client, so it adds the record to
server S2.

4. The add goes into the transaction log on Server S2 and Replication Agent #1 reads it.
Because the node name for that connection indicates that the change was performed by a
replication writer that is reading changes from the same server as the server to which this

agent is writing (Server S1, node ID 10.0.0.1), the Replication Agent skips this change.

4.4 Installing the Replication Agent

Replication Process Environment

The Replication Agent can run from nearly any environment -- with the same byte ordering as the

master server -- that can connect to both the source and target servers, including those

environments. This provides wide latitude in architecting a complete replication solution.

Consideration should be given to local file system constraints, network bandwidth, and processor

overhead for each of the environments in locating the Replication Agent process.

As the Replication Agent is a c-treeACE client to the source target servers, it can be installed

anywhere on the network that can communicate with both servers. As the Replication Agent

applies changes to the target server much as the original client, it is usually recommended to

install the Replication Agent on the same machine as the target server for best performance.

Note: The Replication Agent must be on a machine with the same byte ordering as the master
server to read the transaction log entries correctly.

The Replication Agent also runs as a c-treeACE database engine within itself. As such, it must be

located in a different directory than any other c-treeACE servers. You will find standard c-treeACE

housekeeping, transaction, and status log files associated with the Replication Agent.

Target Server Files

Once the replication has started and successfully connected to both the source and target

servers, it will create a set of files on the target server which contains information about the

current state and position of replication within the source transaction logs. This allows the

Replication Agent to pick up from a previous session should a network connection fail, or the

agent is paused for administrative purposes. These files are:

Replication Agent

All Rights Reserved 26 www.faircom.com

REPLSTATEDT.FCS

REPLSTATEIX.FCS

Replication Agent Service

On Microsoft Windows, the Replication Agent is enabled to run as a service executable. To install

as a service use the Microsoft Service Control utility, sc, to "register" the Replication Agent as a

service.

sc create ctReplAgent binPath= C: \ FairCom \ V9.3.1 \ win32 \ tools \ replication \ ctreplagent.exe

DisplayName= "c - treeACE Replication Agent V10.0"

sc description ctReplAgent "Provides replication services between c - treeACE database engines."

Set the Startup Type to "Automatic" to allow the service to start after machine boot for unattended

operation. Use the Windows Services section of the Management Console to further configure

and control the service once installed.

Tip: The Replication Agent has the ability to be paused when running as a service.

4.5 Installing the Replication Agent as a Windows Service

By default, the Replication Agent runs as a command-line process. In Unix and Linux systems,

this can be sent to a background process in a script as desired.

ctreplagent 2> /dev/null &

The Replication Agent is also designed to be run as a Windows Service. To install the Replication

Agent as a service, perform the following step in a Windows Command Prompt window (note the

spaces after the '=') using the path to your c-treeACE installation.

>sc create ctReplAgent binPath= \ FairCom \ Vx.x \ win32 \ tools \ replication \ ctreplagent.exe start=

auto

Replication Agent

All Rights Reserved 27 www.faircom.com

From the Services Management console, you'll notice that the Replication Agent service can be

started, stopped, paused and resumed. Further configuration can take place from within the

service properties dialog.

4.6 Configuring the Replication Agent

Replication Agent Server Configuration

As the Replication Agent is in actuality a c-treeACE database engine itself, it should be

configured to use a different name (communication port) than any local servers running in the

same machine environment. This is done in the ctsrvr.cfg file located in the Replication Agent

working directory.

Settings File for Server Authentication

The Replication Agent requires connections to both source and target servers. To prevent casual

browsing of server access information, local and and master connection authentication

information is maintained externally from the configuration in an encrypted file. To create this file,

place your user authentication information into a standard text file in the following format:

; User Id

USERID ADMIN

; User Password

PASSWD ADMIN

The ctcmdset utility is then used to encrypt this file as demonstrated here:

#ctcmdset target_auth

In this example, the encrypted output file will be renamed target_auth.set. You can safely secure

the original text file and locate the encrypted file along with the configuration files in the server

directory without compromising user IDs and passwords.

Replication Agent

All Rights Reserved 28 www.faircom.com

See Also:

¶ See the chapter titled c-treeACE Replication Configuration (page 15) for more information

about configuring replication.

¶ View the complete c-treeACE Server documentation (http://docs.faircom.com/doc/ctserver)

for many more advanced options and take advantage of enhanced cache performance.

Example Configuration File

The Replication Agent's operations are directed by a single text-based configuration file,

ctreplagent.cfg. An example is shown below.

Notes:

If you have changed your ADMIN passwords, the target_auth.set and source_auth.set files will
need to be regenerated.

By default, the replicated files will be placed on the target in a directory structure that matches the

directories on the source. The redi rect (page 32) option can be used if the path on the target

machine does not match the source.

The unique_id (page 35) keyword is required in multi-server environments. It is a good practice

to set this keyword in any environment to set the stage for more advanced topologies.

Be sure that log_change_details (page 31) is commented out. This keyword is only used for

diagnostic testing because it can increase the size of the log and degrade performance. To see if
replication is working, use the repadm (page 44) utility with the getstats command-line option.

; c - treeACE Replication Agent Configurat ion File - v9.2.27708 Build(100526)

;The unique ID of the Replication Agent for multi server replications

unique_id REPLAGENT

; Target server connection info

target_authfile target_auth.set

target_server FAIRCOMS@localhost

; Source server connection inf o

source_authfile source_auth.set

source_server FAIRCOMS@SourceIP

; Read 8 KB batches from source server

batch_size 8192

; Use a 5 - second timeout when reading from source server

read_timeout_ms 5000

; Write change details to log file

; log_change_details changes.log

; Redirect file locations

; redirect /path/on/source /path/on/target

; The exception_mode option determines how the Replication Agent handles errors

; that occur when applying operations to the target server.

;

; exceptio n_mode transaction

; When an operation fails, abort the transaction. This option preserves

http://docs.faircom.com/doc/ctserver

Replication Agent

All Rights Reserved 29 www.faircom.com

; atomicity of transactions: either all or none of the operations for the

; transaction are applied to the target c - treeACE Server.

;

; exception_mode operation

; Wh en an operation fails, continue the transaction, skipping only the

; operation that failed. This option does not preserve atomicity of

; transactions: only the operations that the Replication Agent successfully

; applies to the target c - treeACE Server are committed.

An option is also available to maintain needed logs on the master server in lieu of the KEEP_LOGS

option.

;make log position persistent on master server

; remember_log_pos yes

batch_size

Set the batch size to read from the source server.

batch_size 8192

check_update

In V11.5 and later, basic conflict detection is defaulted to on. To disable this add:

check_update no

For record updates (add / deletes / rewrites), if a current record image on a target server differs

from a record image for a delete operation from a source server, the operation is skipped and the

Replication Agent logs the operation as failing with error REPCNF_ERR (1105) in the exception

log.

The entry that is logged to the exception log in case of error 1105 includes both the information

read from the source server (old and new keys and record images) as well as the current record

image read from the target server.

Note: This is a Compatibility Change in V11.5.

debug_minlog

Enable the Replication Agent to log messages to ctreplagent.log when it changes its minimum log

number.

debug_minlog yes

exception_logging

(Supported in V11.5 and later) Disable exception logging.

exception_logging off

Replication Agent

All Rights Reserved 30 www.faircom.com

exception_mode

The exception_mode option determines how the Replication Agent handles errors that occur

when applying operations to the target server.

Modes:

¶ transaction

When an operation fails, abort the transaction. This option preserves atomicity of

transactions: either all or none of the operations for the transaction are applied to the target

c-treeACE Server.

(default)

¶ operation

When an operation fails, continue the transaction, skipping only the operation that failed. This

option does not preserve atomicity of transactions: only the operations that the Replication

Agent successfully applies to the target c-treeACE Server are committed.

Example
exception_mode transaction

exception_mode operation

function_timing

(Supported in V11.5 and later) Enable the Replication Agent to collect function timings. This can

be helpful to troubleshoot a misbehaving replication setup.

function_timing on

lock_retry_count

Specify how many times to attempt to lock a record. This option is used when the Replication

Agent attempts to update a record on the target c-tree Server.

lock_retry_count <count>

See Also

¶ Record Lock Error Retry and Diagnostics (page 40)

lock_retry_sleep

Specify how much time to sleep between record lock attempts. This option is used when the

Replication Agent attempts to update a record on the target c-tree Server.

lock_retry_sleep < sleep_ms >

See Also

¶ Record Lock Error Retry and Diagnostics (page 40)

Replication Agent

All Rights Reserved 31 www.faircom.com

log_change_details

Log change details to a file.

log_change_details changes.log

Note: This keyword should only be used during diagnostic testing as the performance impact will
be measurable.

notify_events

Triggers execution of an external program, named replmon, when certain events occur.

notify_events yes

In V11 and later, the Replication Agent supports a configuration option, notify_events yes ,

that triggers execution of an external program. This external execution can be a Windows batch

file, Unix shell script, or executable and is expected to be named replmon. When an event in the

list of event codes below occurs replmon is called.

Two string values are passed to replmon upon event notification: an error code and one of the

numeric event codes listed below. replmon can then process this exception notification as

appropriate for the environment.

1. Replication Agent is starting

2. Replication Agent is shutting down

3. Replication Agent is entering paused state

4. Replication Agent is resuming operation

5. Replication Agent connected to source server

6. Replication Agent connected to target server

7. Replication Agent lost connection to source server

8. Replication Agent lost connection to target server

9. Replication Agent disconnected from source server

10. Replication Agent disconnected from target server

11. Replication Agent terminating due to exception

Example

In the example below, replmon.bat logs the date, time, event description, and error code to the

file replevent.log:

@echo off

if "%1" == "1" (

 set evdesc=Replicat ion agent is starting.

) else if "%1" == "2" (

 set evdesc=Replication agent is shutting down. Error code %2.

) else if "%1" == "3" (

 set evdesc=Replication agent has been paused.

Replication Agent

All Rights Reserved 32 www.faircom.com

) else if "%1" == "4" (

 set evdesc=Replication agent is resuming normal operation.

) else if "%1" == "5" (

 set evdesc=Replication agent connected to source server.

) else if "%1" == "6" (

 set evdesc=Replication agent connected to target server.

) else if "%1" == "7" (

 set evd esc=Replication agent lost connection to source server. Error code %2.

) else if "%1" == "8" (

 set evdesc=Replication agent lost connection to target server. Error code %2.

) else if "%1" == "9" (

 set evdesc=Replication agent disconnected from source ser ver.

) else if "%1" == "10" (

 set evdesc=Replication agent disconnected from target server.

) else if "%1" == "11" (

 set evdesc=Replication agent terminating due to exception. Exception code %2.

) else (

 set evdesc=Replication agent event code %1. Error code %2.

)

for /f "usebackq tokens=*" %%j in (`date /t`) do set dt=%%j

for /f "usebackq tokens=*" %%j in (`time /t`) do set tm=%%j

echo %dt%%tm% %evdesc% >> replevent.log

On Windows the Replication Agent installs an exception handler so it can notify the external

process if an unhandled exception occurs.

read_timeout_ms

Set the polling timeout value to use when reading from source server.

read_timeout_ms 5000

Default: 5000

redirect

By default, file locations (paths) need to be identical on the source and target server installations.

This option allows files to be redirected to an alternative location on the target server when these

locations are required to differ.

redirect /path/on/source /path/on/target

See Also

¶ Redirect Files to Alternate Locations (page 36)

remember_log_pos

Requests the source server to persist required logs in lieu of using the server-side KEEP_LOGS

option.

remember_log_pos

Default: yes

Replication Agent

All Rights Reserved 33 www.faircom.com

Note: The Replication Agent stores its current minimum required log in the REPLSTATEDT.FCS
record on the target server.

See Also

¶ Starting Replication from a Known Log Position (page 38)

socket_timeout

A loss of network connectivity can cause the Replication Agent to hang in a socket send or

receive call to a source or target server. To allow the Replication Agent to detect and recover

from this situation, V11 and later now supports a configuration option to set a timeout on its send

and receive calls. The following option can be specified in the Replication Agent configuration file,

ctreplagent.cfg:

socket_timeout <timeout_in_seconds>

The default is 5 seconds. A setting of zero disables the timeout.

source_authfile

Set the source server user connection information.

source_authfile source_auth.set

source_nodeid
source_nodeid <dotted_notation>

Forces required node ID for the source server.

See Also

¶ target_nodeid (page 34)

¶ Specify Required Node IDs for Source and Target (page 19)

source_server

Set the source server connection information.

source_authfile source_auth.set

source_server FAIRCOMS@SourceIP

Replication Agent

All Rights Reserved 34 www.faircom.com

start_position

The Replication Agent supports setting its starting position on the source server in the Replication

Agent configuration file, ctreplagent.cfg. Use the start_position configuration option. The

option accepts three possible formats:

start_position #current

start_position <log number> <log position> <minimum log>

start_position <log number> <log position> <last commit log> <last commit position>

Examples

Use the source server's current transaction log position and minimum log:

start_position #current

Start with transaction log 10 at offset 62697158, and set minimum required log to 7:

start_position 10 62697158 7

The Replication API function, ctReplAgentSetConfigOption(), can be used to set the position.

For example:

ctReplAgentSetConfigOption(ctRAOPT _start_position, "10 62697158 7", &repstt, lineno,

configfile);

target_authfile

Set the target server user connection information.

target_authfile target_auth.set

target_nodeid
target_nodeid <dotted_notation>

Forces required node ID for the target server.

See Also

¶ source_nodeid (page 33)

¶ Specify Required Node IDs for Source and Target (page 19)

target_server

Set the target server connection information.

Replication Agent

All Rights Reserved 35 www.faircom.com

target_authfil e target_auth.set

target_server FAIRCOMS@localhost

unique_id

Set the unique ID of the Replication Agent for multi-server replication.

unique_id REPLAGENT

Default: REPLAGENT

See Also

¶ Persistence of Replication Agent State (page 37)

TLS Support for Replication

In V11.5 and later, the Replication Agent supports configuration options that can be specified in

ctreplagent.cfg to enable and configure TLS support for the connections to the source and/or the

target server.

To enable a TLS connection for the source server, use:

source_use_tls yes

To enable a TLS connection for the target server, use:

target_use_tls yes

To set the certificate file name for the source server, use:

source_tls_cert_file filename

To set the certificate file name for the target server, use:

ta rget_tls_cert_file filename

where filename is the name of the file containing the server certificate. The default value is

ctsrvr.pem. To use no certificate, specify an empty string. For example:

target_tls_cert_file ""

Note 1:

The source_use_tls and target_use_tls options force the Replication Agent to use the

TCP/IP communication protocol with TLS enabled. This means that even if the specified source

or target server is using the shared memory communication protocol and is running on the same

machine as the Replication Agent, when this option is used the Replication Agent will only

attempt to connect using TCP/IP with TLS enabled. If you wish to use the Shared Memory

communication protocol to connect to a server on the same machine without falling back to

TCP/IP if the Shared Memory connection fails, you can specify the source or target server name

with the fsharemm protocol. For example:

source_server FAIRCOMS^fsharemm

Replication Agent

All Rights Reserved 36 www.faircom.com

Note 2:

It is not permitted to specify the communication protocol in the source_server or

target_server configuration option (for example, FAIRCOMS^fsharemm) when you use the

source_use_tls or target_use_tls option. In this situation, the Replication Agent logs one

of the following errors and terminates:

Error in replication ag ent configuration file ctreplagent.cfg: When using the source_use_tls

option, the source_server option cannot specify a communication protocol.

Error in replication agent configuration file ctreplagent.cfg: When using the target_use_tls

option, the target_ server option cannot specify a communication protocol.

Passing Replication Agent Command-Line Options to Its Internal

Server

In V11.5 and later, the Replication Agent supports passing c-treeACE Server configuration

options as command-line options, similar to support provided by the c-treeACE Server. For

example:

ctreplagent SERVER_NAME REPAGENT LOCAL_DIRECTORY data2/

4.7 Redirect Files to Alternate Locations

The Replication Agent supports mapping the names of c-tree data files on a source server to

different filenames on a target server.

The configuration option redirect <old> <new> (page 32) can be specified one or more times

in the Replication Agent configuration file, ctreplagent.cfg. <old> specifies the name of a

replicated data file on the c-treeACE source server, and <new> specifies the name of the

corresponding data file on the c-treeACE target server. This option forces the Replication Agent

to replace the old name with the new name when opening the file on the target server.

Examples

Consider a file that exists on the c-treeACE source with the name C:\Documents and

Settings\Administrator\c-tree Data\customer.dat and exists on the c-treeACE target as the file

D:\Documents and Settings\Guest\customer.dat, the following option allows the Replication Agent

to open the file in its location on the target system:

redirect "C: \ Documents and Settings \ Administrator \ c- tree Data \ customer.dat" "D: \ Documents and

Settings \ Guest \ customer.dat"

This option can specify a portion of the filename. For example, to redirect the names of all files in

a particular directory on the source system to another directory on the target system you could

use:

redirect olddir newdir

REDIRECT "C: \ Documents and Set tings \ Administrator \ c- tree Data" "D: \ Documents and Settings \ Guest"

Note: Use double quotes when a filename contains spaces.

Replication Agent

All Rights Reserved 37 www.faircom.com

4.8 Persistence of Replication Agent State

If the Replication Agent process terminates abnormally, it is desirable for the agent to resume

replicating transactions from where it left off in the source server transaction logs. A persistence

state is needed to maintain this information. This persistence requires that the Replication Agent

always knows the last transaction it has committed to the target c-treeACE Server.

To enable this persistent state, a special table is stored on the target server for this purpose, and

for each transaction the Replication Agent commits it updates a replication state record on the

target server in that same transaction. This way, the Replication Agent can always read its latest

state from the target server, even if the Replication Agent process terminates, or should it lose its

connection to the target server, or the target server terminates and restarts.

When multiple Replication Agents are connected to a single target server, it is necessary to

maintain state information unique to each replication instance. To do this, a configurable unique

ID can be assigned to each agent. The Replication Agent unique ID is a string (maximum 32

characters). The Replication Agentôs configuration file, ctreplagent.cfg, can specify the unique ID

using the unique_id configuration option. For example:

unique_id myreplagent

If not specified, the unique ID defaults to REPLAGENT.

The replication state file stored on the target server is named REPLSTATEDT.FCS and is a

variable-length data file that contains one record for each Replication Agent that has registered

itself with the target server. The records are indexed by the Replication Agent unique ID.

When the Replication Agent starts, it reads its unique ID from the ctreplagent.cfg configuration

file, connects to the target server, creates REPLSTATEDT.FCS if it does not exist, and then

reads its Replication Agent state record.

The Replication Agent opens the file ctreplagent.ini if it exists and reads the saved replication

state (log read position and last commit log position). The state from ctreplagent.ini is used if that

file exists; otherwise the state from the Replication Agent state record is used. If neither exists,

the Replication Agent commences its scan from log 1 position 0.

Note: If log 1 no longer exists (for example, if the transaction files were not removed along with
the removal of the REPLAGENT.FCS file), then error 96 (LOPN_ERR, Log file/Start file open
error) is possible. In this case, existing transaction logs will need to be removed, or a
ctreplagent.ini file needs to be created with correct log and position information.

When committing a transaction on the target server, the Replication Agent writes its current state

to the replication state record before it commits the transaction. Note that the Replication Agent

reads its replication state record when it connects to the target server, and the Replication Agent

keeps that record locked until it disconnects from the target server.

For more, see Starting Replication from a Known Log Position (page 38) in the replication

documentation.

Replication Agent

All Rights Reserved 38 www.faircom.com

4.9 Starting Replication from a Known Log Position

An initialization file can be used to force the Replication Agent to begin processing at a known

transaction log position. This is useful in some situations, for example, a failed system that you

have a known good starting point to maintain synchronization between servers.

The text-based ctreplagent.ini file is used for this purpose. When this file is present, it overrides

current persisted states. The format of this file contains two rows. For example:

2 1234567

2 1234789

The first set of numbers is the starting read position (log number, byte offset) in the current

transaction log set on the source server, the second set is the position of the last committed

transaction to the target.

Starting at source server's current log position

The Replication Agent can be started at the source server's current log position by writing

#current on the first line of the ctreplagent.ini file. The Replication Agent connects to the source

server and reads its current log position then initializes the replication read connection to the

source server using that log position.

Note: The source server must be V10.0 or later to use this feature.

See Also

¶ Persistence of Replication Agent State (page 37)

¶ ctReplGetPos (page 98)

¶ ctReplSetPosByLogPos (page 115)

4.10 Using the Dynamic Dump to Synchronize Data for

Replication

The c-treeACE Dynamic Dump restore process automatically generates a ctreplagent.ini starting

file after a successful restore. The position in ctreplagent.ini is in sync with the position at which

time the restored files were originally backed up.

Steps

1. Create a Dynamic Dump script to back up files for replication.

2. Stop the secondary server and the Replication Agent if already running.

3. Execute the Dynamic Dump at the desired point in time on the primary server.

Tip: Use the !DATE and !TIME options to automatically schedule your dump.

4. Using the same dynamic dump script used to back up the files, restore the files on the
secondary server with the ctrdmp utility.

Replication Agent

All Rights Reserved 39 www.faircom.com

Tip: Consider the !REDIRECT option for positioning files if different directory structures are
different between the servers.

5. Copy the ctreplagent.ini file into the Replication Agent's working directory.

6. Restart the secondary server with the data now in sync with the primary server.

7. Restart the Replication Agent.

Replication then commences from the log position on the primary server when the files were

initially backed up, replicating changes since the backup and quickly synchronizing the secondary

server with the primary.

Keeping the Required Transaction Logs

Once the Replication Agent starts, it will register its log requirements with the master server (if

using the default agent configuration: remember_log_pos (page 32)) and from that point on the

Master server should maintain enough logs for that Replication Agent to continue from its position

when it restarts. (For example, if a replica went offline for a day, all the logs from the time it

stopped will be kept by the master server).

However, before a particular Replication Agent is first connected to a master server (only the very

first time) you need to ensure that the transaction logs from the time of your dynamic dump are

maintained until you get the Replication Agents started. You can do this by starting and then

stopping each Replication Agent prior to making the dynamic dump. This will establish a minimum

log requirement associated with that Replication Agent (reader) unique ID so the master server

does not discard any required transaction logs until the Replication Agent has consumed them.

If you have already had these agents running against the master server and are simply changing

target servers, then you can ignore this since they will already have established a minimum log

requirement.

4.11 Correctly Terminate Orphaned Replication Agent

Source and Target Server Connections

It is possible for a network, particularly a WAN, to periodically lose connectivity between the

Replication Agent and its source or target servers. In this situation, the Replication Agent process

may reconnect to the servers and find that the original server-side connection still exists. This

causes the Replication Agent to fail to access the servers and log one of the following errors to

ctreplagent.log.

For the source server:

ERR: Failed to enable replication log position persistence on data source: 780

ERR: Check for two replication agents using the same unique ID (<agentid>)

For the target server:

ERR: Failed to lock replication state record on data target. Check for tw o replication agents using

the same unique ID (<agentid>).

ERR: Failed to read replication state on data target: 827

Replication Agent

All Rights Reserved 40 www.faircom.com

In V11 (and added into this V10.4.1 line), this reconnection logic has been changed allowing the

Replication Agent to locate the connection that is using the same unique ID and request it to

terminate. When this occurs the Replication Agent now logs the following messages:

For the source server:

INF: Successfully disconnected replication reader using same ID on data source

For the target server:

ERR: Failed to lock replication state record on data target. Check for two replication agents using

the same unique ID (RA).

ERR: Failed to read replication state on data target: 42

INF: Successfully disconnected replication reader using same ID on d ata target

Note: This modification requires updating the Replication Agent as well source and target servers
to this new line to obtain corrected support.

4.12 Record Lock Error Retry and Diagnostics

The Replication Agent supports configuration options to specify how many times to attempt to

lock a record and how much time to sleep between record lock attempts. These options are used

when the Replication Agent attempts to update a record on the target c-treeACE Server.

The option lock_retry_count <count> (page 30) specified in ctreplagent.cfg indicates that a

record read or update that fails with error DLOK_ERR (42, Could not obtain data record lock) is

retried up to <count> times (default 2). The option lock_retry_sleep <sleep_ms> (page 30)

specified in ctreplagent.cfg indicates that before retrying the operation that failed with error

DLOK_ERR, the Replication Agent sleeps for <sleep_ms> milliseconds (default 100).

When an update fails with DLOK_ERR (after exhausting the retries), the Replication Agent then

logs the following message to ctreplagent.log as this error is not expected due to the Replication

Agentôs use of blocking locks:

ERR: Unexpectedly failed to update record: error code=42 (diag=<diagnostic_code>)

where <diagnostic_code> is one of the following:

1. EQLVREC() call failed with error DLOK_ERR

2. RWTVREC() call failed with error DLOK_ERR

3. EQLREC() call failed with error DLOK_ERR

4. RWTREC() call failed with error DLOK_ERR

c-treeACE was also modified to add diagnostic log messages in the function that is used to

extend a file. That function contains logic that attempts to acquire a lock on new space. The

function tries to acquire a lock up to 100 times, sleeping for 10 milliseconds between each lock

attempt. It is hypothesized that a RWTVREC() operation could be failing with the DLOK_ERR

error as this code exhausts its retry attempts. Such that we can determine if this is the case,

additional logging was added with the following message to CTSTATUS.FCS when the lock

attempt in this function fails:

extfil: Failed to lock offset 0x<offset> when extending file <filename>: 42

Replication Agent

All Rights Reserved 41 www.faircom.com

4.13 Replication Agent Exceptions and Errors

Connection Failures

Should a connection failure occur, it will be necessary to restart the Replication Agent and

reestablish connections between the replicas. In some cases (for example, an extended length of

outage), it may be necessary (and more efficient) to re-sync the local replica with a copy from the

master replica.

Error 537 - TCOL_ERR

The Replication Agent maintains its own transaction logs and housekeeping files. Removal of

these can cause problems. Be sure the Replication Agent is run in it's own unique directory

independent of any existing servers. You can use the LOCAL_DIRECTORY keyword in the

agent's ctsrvr.cfg file to position these files, just as you would with a regular server configuration.

Error 96 - LOPN_ERR

A common situation is deleting your source server transaction (.FCS) files and you then receive

error LOPN_ERR (96) on replication startup. This error indicates the referenced transaction logs

no longer exist. The Replication Agent maintains a last committed transaction log position in a

REPLSTATEDT.FCS data file on the target server. When resyncing data and starting replication

from a "fresh" state, you should delete both the REPLSTATEDT.FCS and REPLSTATEIX.FCS

files. These files will be recreated as needed by the replication agent after it successfully

connects to the target server and begins applying transactions.

Alternatively, the ctreplagent.ini file can be used to "kick start" replication directly in the agent's

working directory. You can create that file as needed to start at log position 0 with the entry 1 0.

You can also use the #current option to start at the current transaction log position. ctreplagent.ini

is used by default if it exists. You may delete this file after replication is successfully started and it

is no longer needed.

Note: If this position refers to transaction logs that no longer exist (should they be deleted or
rolled off) then a 96 error will occur.

Exception Log

An exception log is generated for any replicated operations that could not be successfully applied

to the local replica. This file is a standard c-tree data file format and should be examined when

specific errors are reported.

Standard Replication Agent output is re-directed to a text based log file, ctreplagent.log, for any

informational messages.

Unexpected Transactions Replicated

As c-treeACE uses transactional-based replication, information in the transaction logs is used to

replicate data to a second system. A easy to encounter error is data that is replicated from data

files that have been deleted. This can arise if the data files were deleted, however, the data

remained in the existing transaction logs and the start position was set to begin replication from

the first log file. The data found in the transaction logs will be then be unexpectedly replicated.

Replication Agent

All Rights Reserved 42 www.faircom.com

If you are "resetting" a master database, be sure that the data and index files, master server

transaction logs, and Replication Agent initialization file (ctreplagent.ini) are all in sync. If you wish

to delete the data files, be sure to also clear the transaction logs on the master server

(L*****.FCS, S*****.FCS).

Other Errors

The Replication Agent runs as a c-treeACE server and can experience the same operational

errors as such. Common errors result from either running the Replication Agent in the same

location as an already operational server, or with the same server name resulting in unexpected

connection errors. Always check the CTSTATUS.FCS log file for any errors should the

Replication Agent not start, or stop unexpectedly.

4.14 Troubleshooting Replication Issues

If replication is not working, check the following:

Is replication enabled for the file? Use the ctinfo utility to check this:

ctinfo yourreplicatedfile.dat ADMIN ADMIN FAIRCOMS

Look for:

Extended File Mode Details:

 ctREPLICATE : file is replicated

1. If replication is not enabled for the file:

a. Check that the REPLICATE option is properly specified in ctsrvr.cfg.

b. Add DIAGNOSTICS REPLICATE to ctsrvr.cfg. When opening a file, a message is logged

if replication cannot be enabled for the file.

2. If replication is enabled for the file:

a. Check that the Replication Agent is running and is properly connected to source and
target

b. Check source server transaction log entries. Use the ctrepd utility and/or Replication

Agent change log (enable the log_change_details option in ctreplagent.cfg).

c. Check the replication exception log for errors:

Ö Did the Replication Agent open the file on the target server?

Ö Did applying adds/deletes/updates fail?

If you are using two-way replication or multiple Replication Agents connected to a server, be sure

to set the unique_id option in the Replication Agent configuration file so that each Replication

Agent has its own unique ID.

If you are doing two-way replication between servers on the same machine, use the

REPL_NODEID (page 19) option in both servers' configuration files to set unique node IDs for the

servers.

If you use localhost or the DNS name for source_server or target_s erver in

ctreplagent.cfg, you will need to use REPL_NODEID (page 19).

Replication Agent

All Rights Reserved 43 www.faircom.com

HTRN_ERR (520)

In V11 and later, changes address the handling of HTRN_ERR (520) without the use of CLNIDXX

(using the ctclnidxx utility, the !CLNIDXX dynamic dump restore option, or the AUTO_CLNIDXX

ctsrvr.cfg option).

When files are copied to a target replication server, index files contain transaction high-water

marks that can conflict with new transaction numbering of incoming replicated transactions. It is

very possible error HTRN_ERR (520, high transaction mark error) may be observed in the

replication exception log when this occurs. It is likely the first transaction that replicated to this file

fail with this error.

The Replication Agent will now attempt to handle HTRN_ERR errors by aborting and retrying the

transaction. Retries are not attempted if the Replication Agent is using the following option:

exception_mode operation .

Note: With this change, it is no longer necessary to run a CLNIDXX operation (using the

ctclnidxx utility, the !CLNIDXX dynamic dump restore option, or the AUTO_CLNIDXX ctsrvr.cfg

option) prior to accessing the target server's copy of the file.

All Rights Reserved 44 www.faircom.com

5. c-treeACE Replication Utilities

Several c-treeACE replication utilities are provided to monitor, troubleshoot and benchmark the

replication process. These utilities are described in this chapter.

5.1 repadm Replication Agent Administrator

The Replication Agent Administrator utility, repadm, is used to control and retrieve statistics from

the Replication Agent process.

repadm - c <command> [- s svn] [- u uid] [- p upw] [- i int [cnt]]

Commands

¶ shutdown - Stop the Replication Agent

¶ getstats - View replication statistics

¶ getstate - View current replication state

¶ getlog - Browse the replication exception log (REPLOGDT.FCS)

¶ pause - Pause the Replication Agent

¶ resume - Resume Replication Agent from a paused state

¶ resync <filename> - (Supported in V11.5 and later) Stop replication on the named file and

resynchronize it. <filename> can be a single file or a text file listing multiple files.

¶ resyncclean <filename> - (Supported in V11.5 and later) Stop replication on the named file,

clean up previous failed resync attempts, and resynchronize it. <filename> can be a single

file or a text file listing multiple files.

¶ getagentids - (Supported in V11.5 and later) Retrieve Replication IDs that are currently

registered in the Replication Agent.

¶ getfuncstats - (Supported in V11.5 and later) Read and display function call times. This can

help troubleshoot a misbehaving replication setup. Figures generated are cumulative from

highest to lowest call time.

¶ fnctim - (Supported in V11.5 and later) Collect function call times. This is off by default,

fnctim=on turns it on and fnctim=off turns it off. Using the getfncstats command will turn it on

if it is off.

¶ exceptionlog - (Supported in V11.5 and later) Turns off exception logging. exceptionlog=off

¶ -d - (Supported in V1.5 and later) When used with the getfuncstats command, this option will

cause the figures generated to be the difference between the previous and current time

interval instead of cumulative.

Options

¶ -s svn c-treeACE Server name

¶ -u uid User name

¶ -p upw User password

c-treeACE Replication Utilities

All Rights Reserved 45 www.faircom.com

¶ -i int [cnt] Pause int seconds for optional cnt times

¶ -h frq Print a descriptive header every frq outputs

¶ -t Output a timestamp with header

Note: This utility can only connect to the Replication Agent process, replagent. NSUP_ERR

(454) is reported when connecting to a standard c-treeACE database engine with this utility.

Authentication File

This utility supports the use of an encrypted password file. Encrypted password files keep user

IDs and passwords from plain view when the utility is used within a script file. They are created

with the ctcmdset utility. The plain text form of the file should be:

; User Id

USERID ADMIN

; User Password

PASSWD <pass>

Use the -a option to specify the name of the encrypted file.

Example Statistics Output

Example State Output

State information outputs the following columns of data:

¶ l - Connection status to local server (y | n)

¶ m - Connection status to master server (y | n)

¶ lognum - Current transaction log number

¶ logpos - Current transaction log position

¶ state - Environment being processed (local | master | self)

¶ seqno - Function sequence number

c-treeACE Replication Utilities

All Rights Reserved 46 www.faircom.com

¶ func - Function by name processed

Exception log filenames easier to query with SQL

The replication exception log (REPLOGDT.FCS) is a c-tree file that contains a record for each

error the Replication Agent has logged. This file can be imported into a SQL database for easier

examination. Because its DODA defines the file name field as type CT_STRING with length zero,

SQL treats that field as type LONGVARCHAR, and some search operators are not available on

such a field.

In V11 and later, the file name field length has been changed to 255 so that SQL treats the field

as a CHAR field. We don't expect this to have any side effects, as filenames should typically be

255 characters or less in length, and c-tree will probably not enforce a limit on the filename.

Note: This change affects only REPLOGDT.FCS files that are created by a new Replication

Agent.

c-treeACE Replication Utilities

All Rights Reserved 47 www.faircom.com

5.2 ctrepd Replication Transaction Log Utility

The c-treeACE replication utility, ctrepd, provides a simple replication environment to quickly

troubleshoot specific replication-related applications. Consider this utility when you need to

benchmark your replication performance as it logs a wealth of transaction replication information.

This utility can be used to set up or fix some replication requirements. For example, it can be

used to set the log requirements for a specific Replication Agent ID, as explained in Setting the

Source Server's Log Requirements (page 50). An example is given in Example: Changing

Replication Agent's Required Minimum Log (page 51).

Usage
ctrepd <log number> <log position> [- b<bufsiz>] [- d] [- f] [- h<num_lines>]

 [- i<timestamp>] [- k<length>] [- m] [- nominlog] [- n]

 [- o<log>,<pos>] [- p] [- p:<password>] [- q] [- r<length>]

 [- s<sleep_time>] [- setlog:<LOG_NUMBER>] [- showlocaltime]

 [- t] [- unqid<id>] [- u:<username>] [- w] [<server_name>]

Arguments

¶ <log number> sets the starting transaction log number.

¶ <log position> sets the starting transaction log offset.

¶ -b[<bufsiz>] enables batch retrieval of changes using a buffer of <bufsiz> bytes.

¶ -d outputs time difference (in seconds) between the log entry time and the time at which the

ctrepd utility read the change from the transaction log.

¶ -f causes the utility to wait for new log entries.

¶ -h<num_lines> (when -w option is used) print a header after every <num_lines> lines of

output.

¶ -i[<timestamp>] starts log scan at specified time (format YYYY-MM-DD hh:mm:ss). A value of

'now' (i.e., -inow) uses the current time for the starting log time.

¶ -lf:<filename> (lower case "lf " as in "limit file") shows only activity for files whose names are

specified in the file <filename>. The names are specified one per line with optional wildcards.

When using this option, the following entries are shown: Record add, delete, and update

operations. File open and close entries are not displayed. Transaction begin and commit

entries are not displayed. ENDTRAN entries for transactions that have one or more

operations for files in the filter list are displayed because they contain the time stamp at which

the changes were committed.

¶ -k[<length>] display <length> bytes of key values.

¶ -m (when -w option is used) displays file names.

¶ -nominlog disables log persistence for source server. If this option is used, the source server

determines the current log requirement based on which log is being read by the utility. When

the option is not used (the default), ctrepd receives REPL_CHKPNT entries.

¶ -n returns activity for transactions that start after the specified starting log position only.

¶ -o<log>,<pos> stop scan at log <log>, offset <pos> the specified starting log position only.

¶ -p enables profiling of log read times output in microseconds as "logrd = <call_time> usec."

c-treeACE Replication Utilities

All Rights Reserved 48 www.faircom.com

¶ -p:<password> specifies the password to use when connecting to the c-tree Server whose

logs are being read.

¶ -q quiet mode: do not output change details.

¶ -r[<length>] display <length> bytes of record images.

¶ -s<sleep_time> sleep <sleep_time> milliseconds between log read calls.

¶ -setlog:<LOG_NUMBER> sets the log requirements for a specific Replication Agent

ID. -setlog:0 removes the log requirement. -setlog:LOG_NUMBER changes the log

requirement to the specified log number. -setlog:current uses the server's most recent

transaction log. See Setting the Source Server's Log Requirements (page 50).

¶ -showlocaltime displays timestamps in the local time format.

¶ -t outputs transactions read per second.

¶ -u:<username> specifies the user name to use when connecting to the c-tree Server whose

logs are being read.

¶ -unqid:<id> sets replication reader unique ID to <id>.

¶ -w outputs one entry per line.

Sample Utility Output
C: \ >ctrepd 361 0 - m - n - f - h42 - p - w

Replication log reader connected to data source.

Starting scan with log 361, position 65536

 log nbr log pos opcode tranno fileid tstamp tdelta logrd filename

 360 3057415 OPNFIL 0 163689 0 n/a 10526 data/cxd01.dat

 360 3057415 OPNFIL 0 163691 0 n/a 22 data/cxd02.dat

 360 3057415 OPNFIL 0 163693 0 n/a 20 data/cxd03.dat

 360 3057415 OPNFIL 0 163695 0 n/a 19 data/cxd04.dat

 360 3057415 OPNFIL 0 163697 0 n/a 19 data/cxd05.dat

 360 3057415 OPNFIL 0 163699 0 n/a 29 data/cxd06.dat

 360 3057415 OPNFIL 0 163701 0 n/a 24 data/cxd07.dat

 360 3057415 OPNFIL 0 163703 0 n/a 19 data/cxd08.dat

 360 3057415 OPNFIL 0 163705 0 n/a 19 data/cxd09.dat

 360 3057415 OPNFIL 0 163707 0 n/a 19 data/cxd10.dat

 360 3057415 OPNFIL 0 163709 0 n/a 19 data/cxd11.dat

 360 3057415 OPNFIL 0 163711 0 n/a 19 data/cxd12.dat

 360 3057415 OPNFIL 0 163713 0 n/a 19 data/cxd13.dat

 360 3057415 OPNFIL 0 163715 0 n/a 19 data/cxd14.dat

 360 3057415 OPNFIL 0 163717 0 n/a 19 data/cxd15.dat

 360 3057415 OPNFIL 0 163719 0 n/a 19 data/cxd16.dat

 360 3057415 OPNFIL 0 163721 0 n/a 19 data/cxd17.dat

 360 3057415 OPNFIL 0 163723 0 n/a 19 data/cxd18.dat

 360 3057415 OPNFIL 0 163725 0 n/a 19 data/cxd19.dat

 360 3057415 OPNFIL 0 163727 0 n/a 19 data/cxd20.dat

 360 3057415 OPNFIL 0 163729 0 n/a 19 data/cxd21.dat

 360 3057415 OPNFIL 0 16373 1 0 n/a 19 data/cxd22.dat

 360 3057415 OPNFIL 0 163733 0 n/a 19 data/cxd23.dat

 360 3406545 BEGTRAN 2596812 0 1167862629 1402 50

 361 65536 BEGTRAN 2596813 0 1167862629 1402 716

 361 65578 BEGTRAN 2596814 0 1167862629 1402 42

 360 3407847 ADDREC 2596812 163699 0 n/a 72 data/cxd06.dat

 361 65752 ENDTRAN 259 6812 0 1167862629 1402 28

 361 67256 ADDREC 2596813 163699 0 n/a 115 data/cxd06.dat

 361 70586 ENDTRAN 2596813 0 1167862629 1402 65

 361 69520 ADDREC 259681 4 163699 0 n/a 54 data/cxd06.dat

 361 70768 SUCTRAN 2596812 0 0 n/a 34

c-treeACE Replication Utilities

All Rights Reserved 49 www.faircom.com

 361 70810 ENDTRAN 2596814 0 1167862629 1402 28

 361 70860 SUCTRAN 2596813 0 0 n/a 34

c-treeACE Replication Utilities

All Rights Reserved 50 www.faircom.com

Setting the Source Server's Log Requirements

Normally the Replication Agent sets the source server's log requirements based on how far it has

processed the activity in the source server's transaction logs. But if the Replication Agent is taken

off-line, an administrator might want to remove the log requirement so that the source server does

not continue to keep old transaction logs.

Note: If the source server is allowed to delete old transaction logs and it is desired to restart the
Replication Agent at a later time at a later log position to continue replicating changes, it is
necessary to re-sync the replicated data files on the target system with the files on the source
server as of the Replication Agent's new starting log position. Otherwise, if there was activity on
the source system between the log position at which the Replication Agent stopped and the new
log position at which the Replication Agent began, the source and target files will be out of sync.

How ctrepd can be used to change log requirements:

The ctrepd utility supports an option that is specifically designed to set the log requirements for a

specific Replication Agent ID. Use -setlog:0 to remove the log requirement, and

use -setlog:LOG_NUMBER to change the log requirement to the specified log number. To use

the server's most recent transaction log, use -setlog:current. Examples:

1) Remove transaction log requirement:
ctrepd - setlog:0 - unqid:REPLID SERVERNAME

Replication log reader connected to data source.

Successfully removed transaction log requirement for replication ID 'REPLID'

2) Set transaction log requirement to log 33:
ctrepd - setlog:33 - unqid:REPLID SERVERNAME

Replication log reader connected to data source.

Successfully set required transaction log for replication ID 'REPLID' to 33

3) Set transaction log requirement to current log (37):
ctrepd - setlog:current - unqid:REPLID SERVERNAME

Replication log reader connected to data source.

Successfully set required transaction log for replication ID 'REPLID' to 37

c-treeACE Replication Utilities

All Rights Reserved 51 www.faircom.com

Example: Changing Replication Agent's Required Minimum Log

The procedures given below can be used to change Replication Agent's required minimum log.

Note: You may need to resync the files on the target server with the source server after
performing these procedures. This is because the source server might delete logs that the agent
hasn't processed yet. However, if the Replication Agent starts once, sets a required log, and is
not used after that, these procedures will remove the log requirement and no other action will be
needed.

To change Replication Agent's required minimum log:

1. Monitor Replication Agent's current position. In this example the Replication Agent is using

unique ID of RA and its minimum required log is 52. The agent is currently connected. If not

connected, the name would be listed as: - RA

ctstat - var - h 1 - t - i 2 - u ADMIN - p ADMIN - s SOURCE_SERVER_NAME

Mon Apr 27 08:43:30 2015

name lowlog curlog curpos

source(SERVER) 49 52 23251686

RA 52 52 2325078 3

2. Shut down the Replication Agent if it is running.

3. To remove a log requirement, run the ctrepd utility and use the -setlog:0 option:

ctrepd - unqid:RA - setlog:0 - inow SOURCE_SERVER_NAME

c- treeACE(tm) Version 10.6.0.40037(Build - 150422)

Transaction Log Entry Reader for Replicated Files

Copyright (C) 1992 - 2015 FairCom Corporation

ALL RIGHTS RESERVED.

Replication log reader connected to data source.

Successfully removed transaction log requirement for replication ID 'RA'

4. Now check the log requirements again. Note that the server will delete old logs only after it
creates a new transaction log, so you won't necessarily see the number of existing logs
decrease immediately.

ctstat - var - h 1 - t - i 2 - u ADMIN - p ADMIN - s SOURCE_SERVER_NAME

Mon Apr 27 08:47:38 2015

name lowlog curlog curpos

source(SERVER) 49 52 23252068

c-treeACE Replication Utilities

All Rights Reserved 52 www.faircom.com

5.3 cttctx Performance Test Utility

cttctx is a multi-threaded c-tree client test for comprehensive testing of c-treeACE Server

operations. This utility was designed specifically for profiling c-treeACE Server performance. Use

this utility to simulate high load conditions against the c-treeACE Server for verifying application

performance.

Usage
cttctx <uid> <upw> <svn> [create [- t<trnmod>] | <nThrds> [- c<concurrency>]

 [- d<dist>] [- e] [- h] [- j] [- o<op>] [- p] [- r<msec>] [- n<niter>]]

Arguments

¶ <uid> User name

¶ <upw> User password

¶ <svn> c-treeACE Server name

¶ create Create new test data/index files

¶ -t<trnmod> Transaction mode to use when creating the files

trnmod is one of the following

Å t ctTRNLOG

Å p ctPREIMG

Å n no tran

¶ <nThrds> Number of c-tree threads to spawn

¶ -c<concurrency> Change thread concurrency to <concurrency>

¶ -e Use the embedded c-treeSQL interface (otherwise use the ISAM interface)

¶ -h Hard exit, abrupt termination without thread cleanup

¶ -j Add to vlength files

¶ -o<op> Operation to apply

<op> is one of the following:

Å a Add

Å r Read

Å d Delete

¶ -p[1 | 2] track performance stats such as latency of operations. p1 tracks total elapsed time.

p2 enables full profiling (elapsed time plus individual call times. This is the equivalent of a

previous -p option).

Output of these stats are written to a file named fnc.<PID>.<THREADID>.log where PID is

the cttctx process ID and THREADID is the executing thread ID.

¶ -r<msec> Number of milliseconds between performing each operation

¶ -n<niter> Number of loop iterations to perform

c-treeACE Replication Utilities

All Rights Reserved 53 www.faircom.com

5.4 ctrepd Replication Debug Utility

In V11 and later, a useful replication debugging/test utility, ctrepd.exe, is now included in the

Replication Agent package. The executable can be found in the \tools\replication directory.

This client utility can be built from standard c-treeACE Professional package by building either a
single-user or multi-threaded client library and including samples and utilities.

ctrepd allows targeted troubleshooting, benchmarking and selected replication actions against

the source server. For example, setting a log position, or log requirements of specific Replication

Agent IDs.

All Rights Reserved 54 www.faircom.com

6. Synchronous Replication Model for

Enhanced Local Performance

This section describes this replication model of one or more local c-treeACE database engines

(local replicas) connected to a master c-treeACE database engine (master replica). This model

can provide enhanced local performance with some application architectures by providing

synchronous updates to both servers.

Resources

For more information about the FairCom c-treeAMS® Replication Agent, see these resources:

¶ c-treeAMS Replication Agent (http://docs.faircom.com/doc/ctrepl/) - View the manual

online.

¶ Quick Start (page 56) - Information about installing and configuring the Replication Agent

manually and a general overview of the system

Architecture

In the Synchronous Replication Model, a local replica satisfies all client reads. When the majority

of database activity is read operations as compared to write (add/update/delete) operations this

can significantly improve local client performance when the master data replica is geographically

located relatively distant with respect to the local replica.

http://docs.faircom.com/doc/ctrepl/

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 55 www.faircom.com

Distributed transactions are used to synchronously update the master c-tree replica as the client

updates the local replica. An independent replication agent replicates data changes as they

become available from the master replica back to the local replicas for complete synchronization

of data among all replicas.

The c-treeACE database engine is designed to make this replication as transparent as possible to

the application. With only a minor connection attribute change, an application can immediately

take advantage of the performance gains possible with this model of data replication.

Replication Components

¶ Locally configured c-treeACE database engine provides Synchronous Updates to the Master

Replica

For an application to take advantage of the local replica's ability to "pass-thru" updates

synchronously to the master server, it is necessary to instruct the client connection to request

this capability upon connection. Modify the application connection attributes with the

appropriate replication User Profile Mask to enable this feature. No other client application

changes are necessary.

¶ Replication of changes from Master Replica to all Local c-treeACE database engines

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 56 www.faircom.com

6.1 Quick Start Guide

This Quick Start takes advantage of an existing c-treeACE ISAM example program called

ctixmg. This program maintains a data file, vcusti, that we will use to demonstrate the replication

functionality.

The following steps are all that are required to get started: Install c-treeACE on the master (page

57), install c-treeACE on the local system (page 60), configure and start the Replication Agent

(page 62), run the ctixmg ISAM example (page 65)

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 57 www.faircom.com

Install c-treeACE on the Master System

Master Server Installation

For demonstration, we need to install c-treeACE on two separate systems, one that acts as the

Master database server and the other is your local replica.

First, install c-treeACE on the master system. When the installation is complete, you will find the

c-treeACE database engine located in the /bin/ace/sql directory.

Note: Unix systems will need to gunzip the package and extract it with the tar utility, ñtar -xò for
installation.

Typical Installation Layout

Master Server Configuration

To change the server names from their defaults, edit the c-treeACE configuration file, ctsrvr.cfg.

For example, to change the server name from FAIRCOMS to FAIRCOM_MASTER, change the

following:

SERVER_NAME FAIRCOMS_MASTER

To specify the files to be replicated, un-comment the filenames. For this example, we use the

ctixmg data file vcusti:

REPLICATE vcusti

This line is found towards the bottom of the ctsrvr.cfg configuration file.

Note: The REPLICATE keyword is used to list the ñdataò files that are to be replicated. You do not

need to specify index file names. You may use multiple REPLICATE keywords, each on a

separate line. Wildcards are supported. Note, in the screen shot below, we specified the vcusti
file used by our ctixmg program, and also all files that end with the extension .dat. This
demonstration does not use data files with the extension .dat, however, you may consider this for

your own data files.

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 58 www.faircom.com

Example Server Configuration File

Master Server Startup

Start the master c-treeACE database engine. Review the ñUp and Running with the c-treeACE

Database Engineò section of the c-treeACE Replication Solutions Guide

(http://docs.faircom.com/doc/ctrepl/cover.htm) for complete details.

Create Master Files

One key requirement/qualification to c-treeACE's existing replication support is that all files must

be created/exist on the Master database. At this time, it is not possible to ñreplicateò a create

operation from a Local Replica to the Master server. Therefore, we will execute our example

program on the Master server so that our data files will be created.

Start the ctixmg example found in /tools/cmdline/utils/client.

#ctixmg ADMIN ADMIN F AIRCOM_MASTER

When prompted to ñEncrypt this fileò choose no (n). You should see something similar to the

following session:

c- tree Plus(R) Version 10

Incremental ISAM Example

The example customer file does not exist. We will now create it.

Do you wish to Encrypt this file (Y/N)?n

 Attempting to create.

File created successfully.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

The files have been created, so you may now Q)uit this program and proceed to setting up your

Local replica.

http://docs.faircom.com/doc/ctrepl/cover.htm

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 59 www.faircom.com

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 60 www.faircom.com

Install c-treeACE on the Local System

Local Server Installation

Install c-treeACE on the local system. When the installation is complete, you will find the

c-treeACE database engine located in the /bin/ace/sql directory as shown in the previous section.

Local Server Configuration

Edit the c-treeACE configuration file, ctsrvr.cfg. We need to make one change in this file:

Specify the replications mapping file by uncommenting the following line:

REPL_MAPPINGS my_rep_mappings_file.ini

Edit the Local Mappings File

Next, edit the replication mapping configuration file, my_rep_mappings_file.ini. Two changes are

needed in this file:

1. Specify the name of the Master Server, if other than the default FAIRCOMS. In the [master]
section of this file, uncomment and change the following line:

;FAIRCOMS@MasterIP

to:

FAIRCOM_MASTER@MasterIP

Be sure to set the proper IP address either by a fully qualified DNS name or an IP address

number.

2. Specify the files to be replicated. Uncomment the following lines in the [mappings] section of
this configuration file.

vcusti

*.dat

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 61 www.faircom.com

Example Mappings File

Local Server Startup

Start the local c-treeACE database engine. Review the Up and Running with the c-treeACE

Database Engine section in the c-treeAMS Replication Agent Guide

(http://docs.faircom.com/doc/ctrepl/cover.htm) for complete details.

Create Local Files

As we stated before while setting up the Master server, one key requirement/qualification to

c-treeACE's existing replication support is that all files must be created/exist on the "Master"

database. At this time, it is not possible to "replicate" a create operation from a "Local" Replica to

the "Master" server. Before starting the replication, the files must be the same on both systems.

We can either copy the files from the Master to our Local server, or, in this case, we we are just

starting, we will execute the example program on the "Local" server so that our data files will be

created here in the same manner as they were on the Master server.

Start the ctixmg example found in /tools/cmdline/utils/client.

#ctixmg ADMIN ADMIN FAIRCOM_LOCAL

When prompted to ñEncrypt this fileò choose no (n). You should see something similar to the

following session:

c- tree Plus(R) Version 11

Incremental ISAM Example

The example customer file does not exist. We wil l now create it.

Do you wish to Encrypt this file (Y/N)?n

 Attempting to create.

File created successfully.

A)dd U)pdate S)equence Set B)egin TRAN E)nd TRAN

X) abort TRAN sa(V)e point res(T)ore Q)uit:

The files have been created, so you may now Q)uit this program.

http://docs.faircom.com/doc/ctrepl/cover.htm

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 62 www.faircom.com

Configure and Start the Replication Agent

The Replication Agent monitors the master server for changes and applies those changes to the

local server as they become available.

Let's review a few concepts to put things into perceptive. This replication model is designed to

improve a local application's read performance. Given a Local Replica server, all "read"

operations done by the application are performed on the Local Replica, eliminating the network

overhead and taking advantage of the Local server's cache. All "write" operations are done on the

Local Replica Server, and also passed through transparently to the Master Replica server. The

application must secure a "write-lock" before any update operation. Transparently, the "write-lock"

will be secured on both the Local Replica server and the Master Replica Server. The update's

record image will be compared before the update occurs to ensure the records are the same on

both servers. Therefore any data modifications (add/update/delete) made by an application will be

done on both severs.

But what about the modifications to the database made by other applications on other machines?

How does the Local Replica stay current to other data changes? This is the job of the Replication

Agent. Each Local Replica server requires a Replication Agent running on its behalf to deliverer

"other" applications modifications to the local database.

Configure the Replication Agent

Edit the Replication Agent configuration file, ctreplagent.cfg found in the /tools/replication folder.

We need to make one change in this file:

Set the Master Server name and address by changing the following line from:

master_server FAIRCOMS@master.hostname

to:

master_server FAIRCOMS@your.hostname

your.hostname is the IP address; either a fully qualified DNS name or an IP address number.

Note: If an IP address number is not used, include the c-tree keyword REPL_NODEID (page 19)

in each server's ctsrvr.cfg.

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 63 www.faircom.com

Create Local Encrypted Files

This next step has already been done for you. The Replication Agent requires two authentication

files, one to log on to the Master server and the other to log on to the Local Server.

We have provided local_auth.cfg and master_auth.cfg with FairCom's default ADMIN user ID and

password. These authentication configuration files must be encrypted with the ctcmdset utility.

You will notice these files are supplied already encrypted and are noted as the local_auth.set and

master_auth.set files.

If you care to do this yourself for other implementations, run the ctcmdset utility to create the

local encrypted authentication files for the local and master servers, by:

¶ Creating a text based local_auth file with the user credentials to log into the local server.

./ctcmdset local_auth

¶ Repeat with the master_auth file for the master authentication server credentials.

./ctcmdset master_auth

Example
; User Id

USERID ADMIN

; User Password

PASSWD ADMIN

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 64 www.faircom.com

Start the Replication Agent

From the /tools/replication folder, execute the ctreplagent program:

./ctreplagent

You can use the repladmn (soon to be renamed to ctrepladmn) utility to monitor the activities of

the Replication Agent. This utility is also found in the /tools/replication folder of your c-treeACE

installation.

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 65 www.faircom.com

Run the ctixmg ISAM Example and Watch Replication

This step uses an existing c-treeACE example program called ctixmg. This program maintains a

data file, vcusti, that we will use to demonstrate the replication functionality.

Replicate Data with the ctixmg ISAM Example

Run the ctixmg ISAM Example against the local server and see that records are synchronously

added and updated on the master server and the local server.

#ctixmg ADMIN ADMIN FAIRCOMS@localhost

Run the ctixmg ISAM Example against the master server to verify for yourself that the changes

have been applied to the master server from the local server.

#ctixmg ADMIN ADMIN FAIRCOM@master.ip.address

Benchmarking Performance

Use the cttctx Benchmark Utility to run a full suite of test data against the local server and watch

the results on the master server.

Monitoring Replication

The c-treeACE Replication Monitor can be used to view the activities of the Replication Agent.

6.2 Local Replica Synchronization

The c-treeACE local replica is a specially configured c-treeACE database engine that allows

update operations to be ñpassed throughò synchronously to a remotely located master replica.

c-treeACE makes this nearly transparent to the application through the use of distributed

transactions, whereby any data update (add/update/delete) is applied and committed to both

database engines simultaneously. Reads are satisfied from the local replica avoiding a costly

network transfer of data when the master replica is located a large geographical distance away.

¶ Reads satisfied from the local replica

¶ Database updates ñpass-throughò to a master replica

Å Adds

Å Deletes

Å Updates

Configuration

A local c-treeACE replica data file is associated with a master replica data file using the

c-treeACE configuration option:

REPL_MAPPINGS <mapfilename>

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 66 www.faircom.com

<mapfilename> is the filename of a text file.

The [mappings] section allows several variations:

[mappings]

; Example 1: Local and master use same filename.

custmast.dat

; Example 2: Local name uses w ildcard; master filename is same as local name.

*.dat

; Example 3: Different local and master paths and filenames.

My Local Data Dir \ myDatafile.dat = My Master Data Dir \ myMasterFile.dat

Client Connection Mode

When a client indicates it wants to update replicated files the USERPRF_TRANREPL bit is set in

the user profile parameter passed to INTISAMX().

As the local server always constructs the key value from the local record image it is acceptable

for a client of the local server to use USERPRF_NTKEY. The local server turns off the

USERPRF_NTKEY bit when it connects to the master server. Likewise, the local server now

turns off the USERPRF_NDATA bit when it connects to the master server.

If a client attempts to use both USERPRF_TRANREPL and USERPRF_NTKEY, the connection

attempt fails with error TR_KTFM_ERR (857, Transactional replication: Automatic target key

transformation must be enabled for connections that use transactional replication). This is

required because the local c-treeACE replica needs to have the untransformed key value so that

it can use it when reading records from the master c-treeACE replica.

If a client attempts to update a local replica without having specified USERPRF_TRANREPL

when it connected, c-treeACE fails the update attempt with error TR_REDF_ERR (854,

Transactional replication: Attempted to update replica without enabling transactional replication

for the connection).

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 67 www.faircom.com

Note: Errors returned when using the USERPRF_TRANREPL mode can be possibly generated
from either the local or the master servers. It may be necessary to check the status and
configuration of both servers to determine the source of the error.

Supported Features

¶ Batch Read operations

¶ Segmented Files

¶ Superfiles

Unsupported Features

¶ Batch insert, delete, or update operations return error TR_NSUP_ERR (858, This feature is

not supported for replicas).

¶ Read with write lock operations on replicas return error TR_NSUP_ERR (858, This feature is

not supported for replicas).

¶ Filters

¶ Partition Files

¶ c-treeDB-specific operations

¶ Serial segment fields (auto-incrementing fields) are not completely supported. Using such

fields could lead to KDUP_ERR (2) errors and INOT_ERR (101) errors.

Connection Failures

If the local server loses its connection to the master server, any locally connected clients using

the USERPRF_TRANREPL mode must reconnect to the local server to continue.

Note: The local server doesn't know the state of any distributed transactions on the master server

after an unplanned disconnection.

Pass-through Operations

The local c-treeACE replica performs the following operations on the master replica when a client

performs them on a local replica:

¶ ISAM file open and close operations: OPNIFIL(), OPNIFILX(), OPNRFIL(), OPNRFILX(),

CLIFIL(), CLRFIL()

¶ ISAM record add operations: ADDREC(), ADDVREC()

¶ ISAM record update operations: RWTREC(), RWTVREC()

¶ ISAM record delete operations: DELREC(), DELVREC()

¶ ISAM record read operations when the record read acquires a write lock: FRSREC(),

FRSVREC(), LSTREC(), LSTVREC(), NXTREC(), NXTVREC(), PRVREC(), PRVVREC(),

DELREC(), DELVREC(), EQLREC(), EQLVREC(), GTEREC(), GTEVREC(), GTREC(),

GTVREC(), LTEREC(), LTEVREC(), LTREC(), LTVREC()

For a connection that is made with the USERPRF_TRANREPL mode, all transaction operations

(transaction begin/end/abort: TRANBEG(), TRANEND(), TRANABT(), TRANABTX(); and

transaction savepoint: TRANSAV(), TRANRST(), SPCLSAV()) are performed on both the local

and the master c-treeACE replicas.

Synchronous Replication Model for Enhanced Local Performance

All Rights Reserved 68 www.faircom.com

Client Shared Library Loading

When the REPL_MAPPINGS option is used, the local c-treeACE replica attempts to load the

multi-threaded c-tree client library (mtclient.dll or libmtclient.so), used to communicate with the

master replica. If this library cannot be loaded, or if it does not contain the required functions,

c-treeACE fails to start with the error TR_CLIL_ERR (850, Transactional replication: Failed to

start c-tree remote client subsystem: see CTSTATUS.FCS for details).

All Rights Reserved 69 www.faircom.com

7. Building Custom c-treeACE Data

Replication Solutions with the Replication

API

The c-treeACE replication API supports the following operations:

¶ Connecting to a c-treeACE server acting as a data source

¶ Connecting to a c-treeACE server acting as a data target

¶ For a c-treeACE data source:

Å Setting the current position in the transaction logs

Å Reading change entries from the transaction logs

Å Opening, reading, and closing files

¶ For a c-treeACE data target:

Å Opening, reading, and closing files

Å Executing transaction control operations on the data target

¶ Applying changes to the target files

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 70 www.faircom.com

7.1 c-treeACE Replication Overview

The Replication Agent, ctreplagent, is a general purpose replication engine that connects to a

master server to read the transaction log and apply changes. For a custom replication solution,

the Replication SDK provides a solution capable of detecting data collisions and providing

two-way synchronization.

Building the Replication, ctreplagent, from Source

You are invited to examine, compile and run this application to discover all of the features the

c-treeACE Replication SDK offers.

To get started with the c-treeACE Replication SDK, select the mtree options to build a c-tree

client library with transaction processing in a dynamic or shared library. You may use single or

multi-threaded clients. The single-threaded client library names are libctclient.so (Unix/Linux) and

ctclient.dll (Windows) while the multi-threaded client library names are libmtclient.so (Unix/Linux)

and mtclient.dll (Windows).

Your ctree.mak make file will include and build ctreplagent (source code found in

sdk\Xtras\ctree.samples\special\utils\ctreplagent.c).

See also:

¶ Specific Replication Requirements (page 2)

7.2 Building a c-treeACE Library Supporting Replication

c-treeACE replication requires a client connection to a database engine to read from the

transaction logs, and apply transactions to another database engine. In addition, your c-tree client

library will require transaction processing support.

Select the mtree options to build a c-tree client library with transaction processing. You may use

single or multi-threaded clients. The single-threaded client library names are libctclient.a

(Unix/Linux) and ctclient.lib (Windows) while the multi-threaded client library names are

libmtclient.a (Unix/Linux) and mtclient.lib (Windows).

A typical c-tree make file will build an example application, ctreplagent

(ctree\samples\special\utils\ctreplagent.c) that demonstrates use of the replication SDK and its

various features. See Replication Agent Overview (page 70) for details on how to build and run

this useful example utility. Review the source code to the c-treeACE replication engine,

ctreplagent, for extensive examples of how to put c-treeACE database replication to use in your

applications.

7.3 Using Data Replication - Data Source Operations

This section discusses the operations supported by the c-treeACE replication API for c-treeACE

data source access.

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 71 www.faircom.com

In this section, you will learn about the following: connecting to a c-treeACE data source; enabling

replication for a c-treeACE data file; setting the start position; reading changes.

Initializing Replication Support

An application that uses the c-treeACE replication API must call the ctReplInit() function before

calling any other c-treeACE replication API functions:

ctReplInit();

Connecting to a c-treeACE Data Source

To connect to a c-treeACE data source, call the c-treeACE replication API function

ctReplConnect(), passing the address of a connection information structure (initialized with

connection attributes) and the address of a connection handle structure. For example:

ctCNXH hcnxsrc; /* Source server connection handle */

ctCNXI cnxinf; /* Connection attributes */

/* Connect to the source server. */

memset(&cnxinf, 0, sizeof(ctCNXI));

strncpy(cnxinf.uid, "ADMIN", IDZ);

strncpy(cnxinf.pwd, "ADMIN", PWZ);

strncpy(cnxinf.svn, "FAIRCOM_SRC", MAX_NAME);

cnxin f.sesstype = REPLSESS_EXTR;

ctReplConnect(&cnxinf, &hcnxsrc);

See ñctReplConnect (page 84)ò for a complete example that includes a description of the

connection string attributes.

Requesting Persistent Logs from a c-treeACE Data Source

It is possible for the client to request the database engine to maintain persistent minimum logs for

the connection, even if the client disconnects.

ctReplPersistMinLog(handle, "text", CTREPL_REG);

Enabling Replication for a c-treeACE Data File

Replication can be enabled for a c-treeACE data file using the REPLICATE configuration keyword

or by calling the ctReplSetFileStatus() API function.

To enable replication for a c-treeACE data file using the REPLICATE c-treeACE configuration

keyword, include one or more entries of the following form in the configuration file, ctsrvr.cfg:

REPLICATE <filename>

where <filename> is the name of a transaction-controlled c-tree data file. Multiple REPLICATE

statements are allowed. Wildcards are also permitted. If applications specify a path when creating

or opening a file, the configuration keyword must specify the path. For example:

;Enable replication for all data files in data directory.

REPLICATE F: \ FairCom \ data \ *.dat

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 72 www.faircom.com

To enable replication for a particular c-treeACE data file using the ctReplSetFileStatus() API

function, connect to the c-treeACE data source and call ctReplSetFileStatus(), specifying the

connection handle for the data source, the filename of the data file to replicate, and a status of 1:

ctReplSetFileStatus(&cnxhnd, "F: \ \ FairCom \ \ data \ \ test.dat", 1);

Correspondingly, you may determine the replication status of a file with a call to

ctReplGetFileStatus() and the replication status value is returned in status:

ctReplGetFileStatus(&cnxhnd, ñF:\ \ FairCom \ \ data \ \ test.datò, &status);

See ñctReplSetFileStatus (page 113)ò and ñctReplGetFileStatus (page 92)ò for complete

examples.

Changing the Buffer Structure

The change buffer reflects the information returned from the data source. Its layout is described

as follows:

typedef struct {

 LONG8 tranno; /* 0: Transaction number*/

 LONG8 tstamp; /* 8: Timestamp*/

 LONG logser; /* 16: Log number*/

 LONG logpos; /* 20: Position in log*/

 ctFLID fileid; /* 24: File ID*/

 VRLEN oldrln; /* 28: Old record length*/

 VRLEN reclen; /* 32: Record length*/

 NINT varlen; /* 36: Size of variable info*/

 NINT oldkln; /* 40: Old key length*/

 NINT keylen; /* 44: Key length*/

 TEXT opcode; /* 48: Operation code*/

 TEXT flags; /* 49: Special status flags*/

 TEXT avail[2]; /* 50: Unused padding field*/

 LONG bufsiz; /* 52: Size of varinf buffer*/

 pTEXT varinf; /* 56: Ptr to variable info*/

 /* Contents are in this order:*/

 /* oldkey, key, oldrec, rec*/

} ctCHGB, *pctCHGB;

Reading Records from c-treeACE Data Source Files

When starting to replicate a set of c-treeACE data files, it may be necessary to load the target

files with the records from the source files. Use the ctReplReadFirstRecord() and

ctReplReadNextRecord() functions to read records from c-treeACE data files.

Example

ctCHGB chgbuf; /* Change buffer */

/* Read first record from source data file. */

chgbuf.varlen = 0;

chgbuf.varinf = NULL;

rc = ctReplReadFirstRecord(&hcnxsrc, &filhnd, &chgbuf);

while (!rc) {

 printf("Successful ly read record: length=%d \ n",

 chgbuf.reclen);

 rc = ctReplReadNextRecord(&hcnxsrc, &filhnd, &chgbuf);

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 73 www.faircom.com

}

if (rc != INOT_ERR)

 printf("Error: Failed to read record. \ n");

See ctReplReadFirstRecord (page 105) and ctReplReadNextRecord (page 107) for complete

examples.

Setting the Start Position

To set the start position for reading change entries from the transaction logs of a c-treeACE data

source, call either ctReplSetPosByLogPos() or ctReplSetPosByTime().

ctReplSetPosByLogPos() sets the current position in the transaction logs for a c-treeACE data

source connection to the specified log number and byte offset. For example:

ctLOGP logpos; /* Data source transaction log position */

/* Set starting position for data source transaction log scan. */

logpos.lognum = 1;

logpos.logpos = 0;

ctReplSetPo sByLogPos(&hcnxsrc, &logpos);

ctReplSetPosByTime() sets the current position in the transaction logs for a c-treeACE data

source connection to the log number and offset corresponding to the first entry at or later than the

specified time. For example:

/* S et starting position for data source transaction log scan. */

ctReplSetPosByTime(&hcnxsrc, "2004 - 08- 27 00:00:00");

See ñctReplSetPosByLogPos (page 115)ò and ñctReplSetPosByTime (page 117)ò for complete

examples.

Reading Changes

Call ctReplGetNextChange() to read changes from the transaction logs of a c-treeACE data

source. Before the first call to ctReplGetNextChange(), connect to the data source and set the

current position as described above. For example:

ctCHGB chgbuf; /* Change buffer */

/* Set starting position for data source transaction log scan. */

logpos.lognum = 1;

logpos.logpos = 0;

ctReplSetPosByLogPos(&hcnxsrc, &logpos);

/* Read next change from target server. */

ctReplGetNextChange(&hcnxsrc, &chgbuf, 1000);

See ñctReplGetNextChange (page 94)ò for a complete example.

Terminating Replication Support

An application that uses the c-treeACE replication API must call the ctReplTerm() function when

done using the replication API:

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 74 www.faircom.com

ctReplTerm();

7.4 Using Data Replication - Data Target Operations

This section discusses the operations supported by the c-tree replication API for c-treeACE data

target actions.

In this section, you will learn the following: initializing replication, connecting to a c-treeACE data

target; applying changes to a c-treeACE data target; reading a record by Unique Key from a data

target; terminating a c-treeACE target connection.

Initializing Replication Support

An application that uses the c-treeACE replication API must call the ctReplInit() function before

calling any other c-treeACE replication API functions:

ctReplInit();

Connecting to a c-treeACE Data Target

To connect to a c-treeACE data target, call the c-treeACE replication API function

ctReplConnect(), passing the address of a connection information structure (initialized with

connection attributes) and the address of a connection handle structure. For example:

ctCNXH hcnxtgt; /* Target server connection handle */

ctCNXI cnxinf; /* Connection attributes */

/* Connect to the target server. */

memset(&cnxinf, 0, sizeo f(ctCNXI));

strncpy(cnxinf.uid, "ADMIN", IDZ);

strncpy(cnxinf.pwd, "ADMIN", PWZ);

strncpy(cnxinf.svn, "FAIRCOM_TGT", MAX_NAME);

cnxinf.sesstype = REPLSESS_APPL;

ctReplConnect(&cnxinf, &hcnxtgt);

See ñctReplConnect (page 84)ò for a complete example that includes a description of the

connection string attributes.

Applying Changes to Files on a c-treeACE Data Target

Changes read from a c-treeACE data source are transaction controlled operations, file open or

close operations, or file update operations:

¶ To perform transaction control operations, call ctReplTranCtl().

¶ To open and close files, call ctReplOpenFile() and ctReplCloseFile().

¶ To apply changes to a file, call ctReplChangeRecord().

Note: To support repleng grouping operations for more than one transaction into a single
transaction, ctReplApplyOpsXtd() checks the opcode field of the specified change buffer. If
opcode is set to REPL_SUCTRAN, ctReplApplyOpsXtd() begins a transaction (if there is more
than one operation associated with the source transaction) and commits or aborts the transaction
after it applies the changes. If opcode is not set to REPL_SUCTRAN, ctReplApplyOpsXtd()

assumes that the caller is making their own calls to begin/commit/abort transactions.

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 75 www.faircom.com

For examples, see c-tree Replication API Function Reference (page 77) for these functions later

in this document.

Reading a Record by Unique Key Value on a c-treeACE Data Target

In some cases it may be desirable to read a record from the data target by key value (for

example, if an update operation fails, it may be desired to read the existing record by that unique

key value). To accomplish this, call ctReplReadRecordByKey().

Example

/* Rea d next change from target server. */

ctReplGetNextChange(&hcnxsrc, &chgbuf, 1000);

/* On an update, read original record from target by old key. */

if (chgbuf.opcode == REPL_RWTREC) {

 redbuf.varlen = 0;

 redbuf.varinf = NULL;

 /* On update, chg buf.varinf starts with old key value. */

 rc = ctReplReadRecordByKey(&hcnxtgt, &filhnd, chgbuf.varinf, &redbuf);

 if (!rc)

 printf("Successfully read record by key: length=%d \ n",

 redbuf.reclen);

 else

 printf("Error: Fail ed to read record by key: %d \ n",

 rc);

}

See ctReplReadRecordByKey (page 110) for a complete example.

Terminating Replication Support

An application that uses the c-treeACE replication API must call the ctReplTerm() function when

done using the replication API:

ctReplTerm();

7.5 Custom Transaction Log Entries

The c-treeACE transaction logs contain information detailing the complete history of a user

transaction. These logs guarantee that in the event of a catastrophic c-treeACE failure (e.g. a

power failure) the existing data and index files can be brought back to a consistent state when the

server restarts. The transaction logs also allow the server to make online backups via the c-tree

Dynamic Dump feature.

c-treeACE permits a client to connect and read the transaction logs directly through a new API,

useful in replicating transactions across servers. There are situations where it would be useful for

a user to insert their own entries into the transaction logs.

Building Custom c-treeACE Data Replication Solutions with the Replication API

All Rights Reserved 76 www.faircom.com

TRANUSR() permits users to make their own entries in the transaction log. This function is

designed for only the most advanced users, and will be of limited value unless the user has a

facility to read the transaction logs. The long name of this function is UserLogEntry().

All Rights Reserved 77 www.faircom.com

8. c-treeACE Replication API Function

Reference

This chapter contains function reference entries for the c-treeACE Replication API functions.

c-treeACE Replication API Function Reference

All Rights Reserved 78 www.faircom.com

ctReplAllocMem

Allocate a memory block of the specified size.

Type

ISAM function.

Declaration
pVOID ctReplAllocMem(LONG memsiz)

Description

ctReplAllocMem() allocates a memory block of the size specified by the input parameter

memsiz. c-tree replication API functions use this function internally to allocate buffers that are

returned to the application. For example, ctReplGetNextChange() calls ctReplAllocMem() to

allocate the variable-length portion of the change buffer returned to the application. Applications

should call ctReplFreeMem() to free memory allocated by ctReplAllocMem().

Return

On success, the function returns the memory address of the start of the newly allocated memory

block. The function returns NULL if the memory cannot be allocated.

Example

pTEXT recbuf;

/* Allocate 1024 - byte record buffer. */

if (!(recbuf = (pTEXT)ctReplAllocMe m(1024)))

 printf("Error: Failed to allocate memory for record buffer. \ n");

See also

ctReplFreeMem()

c-treeACE Replication API Function Reference

All Rights Reserved 79 www.faircom.com

ctReplChangeRecord

Apply the specified change to the specified file.

Type

ISAM function.

Declaration
NINT ctReplChangeRecord(pctCNXH pcnxhnd, pctFILH pfilhnd, pctCHGB pchgbuf)

Description

ctReplChangeRecord() applies a record add, delete, or update change operation read from a

c-treeACE data source to a c-treeACE file. pcnxhnd is the connection handle for a c-treeACE

connection established by a call to ctReplConnect. pfilhnd is a file handle for a c-treeACE file

open on the c-treeACE database engine set by a call to ctReplOpenFile(). pchgbuf points to a

buffer containing change details returned by a call to ctReplGetNextChange().

ctReplChangeRecord() is designed so that a change buffer returned by

ctReplGetNextChange() can be passed to ctReplChangeRecord() without requiring any

modifications to the change buffer. But depending on the operation (add, delete, or update), not

all of the fields in the change buffer are required. If unneeded values are supplied they are

ignored.

The following table shows the minimal required settings for the fields of the change buffer for

each operation. On inserts, the unique key is formed from the record image, so only the record

image is required. On deletes, only the unique key is needed in order to perform the delete. On

updates, the old key value and new record image are needed in order to read the original record

by the original key value and to update the record with the new record image.

Fields Insert Delete Update

opcode REPL_ADDREC REPL_DELREC REPL_RWTREC

tranno Not used Not used Not used

tstamp Not used Not used Not used

logser Not used Not used Not used

logpos Not used Not used Not used

fileid Not used Not used Not used

oldkln 0 0 Set to old key
length

keylen 0 Set to key length 0

oldrln 0 0 0

reclen Set to record
length

0 Set to new record
length

varlen Set to record
length

Set to key length Set to old key
length + new
record length

c-treeACE Replication API Function Reference

All Rights Reserved 80 www.faircom.com

Fields Insert Delete Update

varinf Contains record
image

Contains unique
key value

Contains old key
value followed by
new record image

Return

Value Symbolic Constant Explanation

2 KDUP_ERR Duplicate Key Error. The key value already
exists in the index.

101 INOT_ERR Could not satisfy and ISAM search request for
index isam_fil. This error frequently indicates
"End of File" reached, or "Record not Found."

The following items are the probable causes of
the INOT_ERR (101).

Å Passing GetRecord() a duplicate allowed
index number (keyno). GetRecord() does not

support duplicate allowed indices.

Å Improper target padding. Review ñKey
Segment Modesò in the c-tree Plus
Programmerôs Guide.

Å Not calling TransformKey() on target. Refer

to ñTransformKeyò in the Function Reference
Guide

Å Passing ctDeleteSequence() a sequence

name that does not exist

Å Improper segment mode. Review ñKey
Segment Modesò in the c-tree Plus
Programmerôs Guide.

Å ctFILBLK() is called and the file is already

blocked.

446 BMOD_ERR Invalid key mode, or operation type. The
specified transaction operation type is invalid.

517 GNOT_ERR regid is not registered. Typically a connection
handle is not valid.

540 PNUL_ERR NULL parameter. A NULL pointer was possibly
passed to a function.

See the c-treeACE Programmerôs Reference Guide for a complete listing of valid c-treeACE error values.

Example

ctCNXH hcnxsrc; /* Data Source connection handle */

ctCNXH hcnxtgt; /* Data Target connection handle */

ctCNXI cnxinf; /* Connection attributes */

ctFILH filhnd; /* File handle */

ctLOGP logpos; /* Data source transaction log position */

ctCHGB chgbuf; /* Change buffer */

NINT rc; /* F unction return code */

/* Initialize c - treeACE replication engine. */

ctReplInit();

/* Connect to the source server. */

c-treeACE Replication API Function Reference

All Rights Reserved 81 www.faircom.com

memset(&cnxinf, 0, sizeof(ctCNXI));

strncpy(cnxinf.uid, "ADMIN", IDZ);

strncpy(cnxinf.pwd, "ADMIN", PWZ);

strncpy(cnxi nf.svn, "FAIRCOM_SRC", MAX_NAME);

cnxinf.sesstype = REPLSESS_EXTR;

ctReplConnect(&cnxinf, &hcnxsrc);

/* Connect to the target server. */

strncpy(cnxinf.svn, "FAIRCOMS_TGT", MAX_NAME);

cnxinf.sesstype = REPLSESS_APPL;

ctReplConnect(&cnxinf, &hcnxtgt);

/* Open a file on the target server. */

ctReplOpenFile(&hcnxtgt, "test.dat", &filhnd);

/* Set starting position for data source transaction log scan. */

logpos.lognum = 1;

logpos.logpos = 0;

ctReplSetPosByLogPos(&hcnxsrc, &logpos);

/* Read next change fr om target server. */

ctReplGetNextChange(&hcnxsrc, &chgbuf, 1000);

/* Apply change to file on target server. */

if ((rc = ctReplChangeRecord(&hcnxtgt, &filhnd, &chgbuf)))

 printf("Error: Failed to apply change: %d \ n", rc);

c-treeACE Replication API Function Reference

All Rights Reserved 82 www.faircom.com

ctReplCloseFile

Close the specified c-treeACE data file and its associated indices.

Type

ISAM function.

Declaration
NINT ctReplCloseFile(pctCNXH pcnxhnd, pctFILH pfilhnd)

Description

ctReplCloseFile() closes a c-treeACE data file and associated indices that were opened by a call

to ctReplOpenFile(). pcnxhnd is the connection handle for a c-treeACE connection established

by a call to ctReplConnect(). pfilhnd is a file handle for a c-treeACE file open on the c-treeACE

database engine set by a call to ctReplOpenFile().

Return

Value Symbolic Constant Explanation

26 FACS_ERR File number (datno, keyno, or filno) is not in use.
Typically, a file handle is invalid.

517 GNOT_ERR regid is not registered. Typically a connection
handle is not valid.

540 PNUL_ERR NULL parameter. A NULL pointer was possibly
passed to a function.

See the c-treeACE Programmerôs Reference Guide for a complete listing of valid c-treeACE error values.

Example

ctCNXH hcnxsrc; /* Source server connection handle */

ctCNXH hcnxtgt; /* Target server connection handle */

ctCNXI cnxinf; /* Connection attributes */

ctFILH filhnd; /* File handle */

ctLOGP logp os; /* Data source transaction log position */

ctCHGB chgbuf; /* Change buffer */

NINT rc; /* Function return code */

/* Initialize c - tree replication engine. */

ctReplInit();

/* Connect to the source serve r. */

memset(&cnxinf, 0, sizeof(ctCNXI));

strncpy(cnxinf.uid, "ADMIN", IDZ);

strncpy(cnxinf.pwd, "ADMIN", PWZ);

strncpy(cnxinf.svn, "FAIRCOM_SRC", MAX_NAME);

cnxinf.sesstype = REPLSESS_EXTR;

ctReplConnect(&cnxinf, &hcnxsrc);

/* Connect to the target serve r. */

strncpy(cnxinf.svn, "FAIRCOMS_TGT", MAX_NAME);

cnxinf.sesstype = REPLSESS_APPL;

ctReplConnect(&cnxinf, &hcnxtgt);

c-treeACE Replication API Function Reference

All Rights Reserved 83 www.faircom.com

/* Open a file on the target server. */

ctReplOpenFile(&hcnxtgt, "test.dat", &filhnd);

/* Set starting position for data source transaction log scan. */

logpos.lognum = 1;

logpos.logpos = 0;

ctReplSetPosByLogPos(&hcnxsrc, &logpos);

/* Read next change from target server. */

ctReplGetNextChange(&hcnxsrc, &chgbuf, 1000);

/* Apply change to f ile on target server. */

ctReplChangeRecord(&hcnxtgt, &filhnd, &chgbuf);

/* Close a file on the target server. */

if ((rc = ctReplCloseFile(&hcnxtgt, &filhnd)))

 printf("Error: Failed to close file: %d \ n", rc);

See also

ctReplOpenFile()

c-treeACE Replication API Function Reference

All Rights Reserved 84 www.faircom.com

ctReplConnect

Connect to a c-treeACE data source or data target.

Type

ISAM function.

Declaration
NINT ctReplConnect(pctCNXI pcnxinf, pctCNXH pcnxhnd)

Description

ctReplConnect() connects to the specified c-treeACE database engine. pcnxinf points to a

connection attribute structure specifying properties for the connection. pcnxhnd points to a

connection handle structure. Following a successful connection, this connection handle may be

used for subsequent operations for that connection.

The connection attributes identify the server and indicate whether the connection is a connection

to a data source or a data target. The connection attribute structure is defined as follows:

typedef struct {

 NINT sesstype;

 TEXT uid[IDZ];

 TEXT pwd[PWZ];

 TEXT svn[MAX_NAME];

 TEXT logpath[MAX_NAME];

} ctCNXI, *pctCNXI;

Set uid to the user ID, password to the user password, and svn to the c-treeACE database engine

name. For a data target connection, specify a user with sufficient authority to open the target

c-tree data files for read/write access.

For a data source connection, set sesstype to REPLSESS_EXTR and set logpath to the path in

which the c-treeACE transaction logs reside.

For a data target connection, set sesstype to REPLSESS_APPL.

A data target connection ignores the logpath setting.

Drop Change Operations Prior to Log Scan Start Position

By default, the replication API function ctReplGetNextChange() returns change records for some

operations that occur before the specified log scan start position. Such operations include:

¶ File Open operations encountered during the backward log scan when positioning to the

specified log scan start position

¶ Transaction activity for pending transactions as of the specified log scan start position.

The return of these entries makes it possible for a log scan utility to scan up to a particular log

position and then to resume the scan from that position without remembering transaction state

information other than the log position at which the scan is to be restarted.

This may be unnecessary in some situations. For those applications not requiring changes that

occur before the log scan start position, ctReplConnect() now supports an additional ability to

avoid receiving such changes. To enable this feature, include the REPLSESS_NEW_ONLY flag

c-treeACE Replication API Function Reference

All Rights Reserved 85 www.faircom.com

in the sesstype field of the connection information structure whose address is passed to

ctReplConnect().

Note: As before, also include the flag REPLSESS_EXTR in the sesstype field to indicate that the

client is reading the transaction logs rather than applying changes to a target database.

Batch Mode Support

c-treeACE supports returning replication changes to a replication reader in a batch mode. To

enable the use of the batch mode, a client follows these steps when connecting to a c-tree Server

data source:

1. OR the REPLSESS_BATCH mode into the sesstype field of the connection information
structure passed to ctReplConnect(), and

2. Set the batsiz field of the connection information structure passed to ctReplConnect() to the
size in bytes of the replication batch buffer to use.

Performance Note: This batch mode support option is the default standard in the c-treeACE
Replication API. An 8 KB batch buffer is the default size. To disable batch buffering, include the
REPLSESS_BATCH mode in the sesstype field of the connection information structure you pass
to ctReplConnect() and set the batsiz field of the connection information structure to zero.

To examine the effects of batch mode operations, the ctrepd and repleng utilities have been

updated to accept an additional command-line option -b[<bufsiz>]. This option enables batch

retrieval of changes using a buffer of <bufsiz> bytes. If <bufsiz> is not specified, the utilities

default to a buffer size of 8 KB.

Return

Value Symbolic Constant Explanation

84 MUSR_ERR Maximum number of allowed users exceeded.

133 ASKY_ERR Could not identify Server. Server is probably not
active, or could not be found on the network.

450 LUID_ERR Invalid user id when logging on Server.

451 LPWD_ERR Invalid password when logging on Server.

530 LMTC_ERR Client handshake does not match server.

540 PNUL_ERR NULL parameter. A NULL pointer was possibly
passed to a function.

43 FVER_ERR Current configuration parameters are
inconsistent with the configuration parameters at
the time of file creation. Replication: Check for
version incompatibility between server and
Replication Agent.

See the c-tree Programmerôs Reference Guide for a complete listing of valid c-treeACE error values.

Example

ctCNXH hcnxsrc; /* Source server connection handle */

ctCNXH hcnxtgt; /* Target server connection handle */

ctCNXI cnxinf; /* Connection attributes */

NINT rc; /* Function return code */

c-treeACE Replication API Function Reference

All Rights Reserved 86 www.faircom.com

/* Initialize c - tree replication engine. */

ctReplInit();

/* Connect to the source server. */

strncpy(cnxinf.uid, "ADMIN", IDZ);

strncpy(cnxinf.pwd, "ADMIN", PWZ);

strncpy(cnxinf.svn, "FAIRC OM_SRC", MAX_NAME);

cnxinf.sesstype = REPLSESS_EXTR;

if ((rc = ctReplConnect(&cnxinf, &hcnxsrc)))

 printf("Error: Failed to connect to data source: %d \ n", rc);

/* Connect to the target server. */

strncpy(cnxinf.svn, "FAIRCOMS_TGT", MAX_NAME);

cnxinf.ses stype = REPLSESS_APPL;

if ((rc = ctReplConnect(&cnxinf, &hcnxtgt)))

 printf("Error: Failed to connect to data target: %d \ n", rc);

Limitations

A c-treeACE data target may be located on a remote system but the byte ordering of the target

system must match the byte ordering of the source system. This is because the c-treeACE

replication API returns data record contents and key values in the source systemôs native format.

For now, this precludes replication support between different byte-ordered systems.

See also

ctReplDisconn()

c-treeACE Replication API Function Reference

All Rights Reserved 87 www.faircom.com

ctReplDisconn

Disconnect from a c-treeACE data source or data target.

Type

ISAM function.

Declaration
NINT ctReplDisconn(pctCNXH pcnxhnd)

Description

ctReplDisconn() terminates a connection to a c-treeACE database engine that was established

by a call to ctReplConnect(). pcnxhnd points to a connection handle structure for the connection.

Return

Value Symbolic Constant Explanation

517 GNOT_ERR regid is not registered. Typically a connection
handle is not valid.

540 PNUL_ERR NULL parameter. A NULL pointer was possibly
passed to a function.

See the c-treeACE Programmerôs Reference Guide for a complete listing of valid c-treeACE error values.

Example

ctCNXH hcnxsrc; /* Source server connection handle */

ctCNXH hcnxtgt; /* Target server connection handle */

ctCNXI cnxinf; /* Connection attributes */

ctFILH filhnd; /* File handle */

ctLOGP logpos; /* Data source transaction log position */

ctCHGB chgbuf; /* Change buffer */

NINT rc; /* F unction return code */

/* Initialize c - tree replication engine. */

ctReplInit();

/* Connect to the source server. */

memset(&cnxinf, 0, sizeof(ctCNXI));

strncpy(cnxinf.uid, "ADMIN", IDZ);

strncpy(cnxinf.pwd, "ADMIN", PWZ);

strncpy(cnxinf. svn, "FAIRCOM_SRC", MAX_NAME);

cnxinf.sesstype = REPLSESS_EXTR;

ctReplConnect(&cnxinf, &hcnxsrc);

/* Connect to the target server. */

strncpy(cnxinf.svn, "FAIRCOMS_TGT", MAX_NAME);

cnxinf.sesstype = REPLSESS_APPL;

ctReplConnect(&cnxinf, &hcnxtgt);

/* Ope n a file on the target server. */

ctReplOpenFile(&hcnxtgt, "test.dat", &filhnd);

/* Set starting position for data source transaction log scan. */

logpos.lognum = 1;

c-treeACE Replication API Function Reference

All Rights Reserved 88 www.faircom.com

logpos.logpos = 0;

ctReplSetPosByLogPos(&hcnxsrc, &logpos);

/* Read next change from tar get server. */

ctReplGetNextChange(&hcnxsrc, &chgbuf, 1000);

/* Apply change to file on target server. */

ctReplChangeRecord(&hcnxtgt, &filhnd, &chgbuf);

/* Disconnect from the target server. */

if ((rc = ctReplDisconn(&hcnxtgt)))

 printf("Error: Failed to disconnect from data source: %d \ n", rc);

/* Disconnect from the source server. */

if ((rc = ctReplDisconn(&hcnxsrc)))

 printf("Error: Failed to disconnect from data source: %d \ n", rc);

See also

ctReplConnect()

c-treeACE Replication API Function Reference

All Rights Reserved 89 www.faircom.com

ctReplFreeMem

Free memory allocated by ctReplAllocMem.

Type

ISAM function.

Declaration
VOID ctReplFreeMem(pVOID pntr)

Description

ctReplFreeMem() frees a memory block allocated by ctReplAllocMem(). The input parameter

pntr specifies the starting memory address of the memory block to be freed.

Return

The function does not return a value. If the specified pointer is NULL, the function takes no action.

Example

/* Free record buffer allocated by ctReplAllocMem. */

ctReplFreeMe m(recbuf);

See also

ctReplAllocMem()

